Парадокс достижимости в натуральном ряде.
Натуральный ряд N - это множество, определяемое системой аксиом Пеано, см. п.1.1. § 1. Элемент x будем называть достижимым, если этот элемент х=S(...S(S(1))) получен конечным числом операций последования S из первого элемента “1”.
Вопрос: всякий ли элемент x достижим? Для ответа воспользуемся аксиомой 5 “Математической индукции” аксиоматики Пеано, см. п.1.1. § 1. Пусть М - множество всех достижимых элементов: 1М, S(1) М; если xМ, то S(х)М. Следовательно, по аксиоме 5, заключаем, что МN, т.е. все элементы натурального ряда достижимы.
С другой стороны, как мы знаем, п.1.1. § 1, линейная цепь:
Т = 1, 2, ... , n, ... ; ..., а-2, а -1, а0, а1, а2, ... ; ... ,
является моделью натурального ряда (все аксиомы Пеано выполняются). В этой модели второй и следующие за ним блоки имеют вид:
..., а-2, а -1, а0, а1, а2, ...
и содержат недостижимые элементы. Получили противоречие с тем, что все элементы достижимы.
Покажем, что свойство достижимости, назовем его аксиомой Д, не зависит от аксиом Пеано, следовательно, не является логически выводимым в теории этой аксиоматики.
Пусть П= П1, ... ,П5 - аксиоматика Пеано, п.1.1, §1.
Модель Сколема Т реализует систему Аксиом П и отрицание аксиомы Д:Т=R1П,Д. Модель десятичного систематического представления N натурального ряда реализует аксиомы П и Д:N=R2(П,Д). Следовательно, согласно достаточным условиям независимости системы аксиом, п.7.3., §7, заключаем, что аксиома Д не зависит от П.
Вывод.
В теории аксиом Пеано свойство достижимости не доказуемо и не опровержимо, подобно тому, как в абсолютной планиметрии не доказуема и не опровержима аксиома параллельности.
-
Содержание
- Оглавление.
- Пример 1
- Пример 2
- Пример 3
- Вопрос.
- Глава I Математический формализм
- О понятии действительных чисел
- Формализм натуральных чисел.
- Операции, определяющие формирование множества рациональных чисел.
- Вывод 1.
- Вывод 2.
- Аксиома связи сложения и умножения.
- Задача 2.
- Вывод 3.
- Аксиоматизация множества действительных чисел.
- Аксиома непрерывности Кантора.
- Аксиоматическое обоснование евклидовой геометрии.
- О“Началах” Евклида.
- Аксиоматика д. Гильберта(1862-1943)
- Группа 1. Аксиомы соединения.
- Теорема 1.
- Теорема 2.
- Теорема 3.
- Группа 2. Аксиомы порядка.
- Определение.
- Группа 3. Аксиомы конгруэнтности.
- Теорема (о внешнем угле треугольника).
- Определение движения.
- Замечание 1.
- Вывод 1.
- Вывод 2.
- Группа 4. Аксиомы непрерывности.
- Замечание 2.
- Замечание 3.
- Вывод 3.
- Группа 5. Аксиома параллельности.
- Замечание 4.
- Два недостатка аксиоматики д. Гильберта.
- Структура векторного пространства.
- Модель направленных отрезков.
- Сложение обладает свойствами:
- Свойства операции умножения:
- Определение.
- Арифметическая модель векторного пространства.
- Теорема размерности.
- Вывод 1.
- Вывод 2.
- Вывод 3.
- Аксиомы скалярного произведения векторов.
- Следствие.
- Следствие.
- Вывод 4.
- Определение.
- Модель Вейля евклидовой геометрии.
- Арифметизация трехмерного евклидова пространства.
- Свойства операции откладывания вектора.
- Определение.
- Вывод 1.
- Вывод 2.
- Многомерное арифметическое евклидово пространство.
- Вывод 3.
- Замечание.
- Следствие 1.
- Основные факты в планиметрии Лобачевского.
- 1. Сумма углов многоугольника в плоскости l2.
- Следствие 2.
- Вывод 3.
- Главаii Свойства аксиоматических систем.
- Математические структуры и аксиоматические теории.
- Понятие отношений между объектами.
- Следствие 1.
- Пример 1.
- Определение.
- Следствие 2.
- Понятие математической структуры.
- Определение.
- Замечание 1.
- Формальная и содержательная аксиоматики. Теории и структуры.
- Рассмотрим пример.
- Вывод 1.
- Вывод 2.
- Определение.
- Изоморфизм.
- Пример 1.
- Пример 2.
- Определение изоморфизма.
- Вывод 3.
- Вывод 1.
- Независимость аксиоматической системы.
- Независимость аксиомы параллельности.
- Замечание 1.
- Дедуктивная полнота и категоричность системы аксиом.
- Определение (дедуктивной полноты).
- Определение (категоричности).
- Историческая роль V постулата Евклида в развитии оснований математики.
- Анализ текстовых парадоксов.
- Языковые свойства имен объектов.
- Пример 1.
- Пример 2.
- Пример 3.
- Проблема выразимости.
- Понятие искусственного языка.
- Понятие парадокса.
- “Ахиллес и черепаха”.
- Парадокс пустого множества.
- Парадокс достижимости в натуральном ряде.
- “Одно и то же, но по-разному”
- Пример 1.
- Пример 2.
- Заключение.
- Обозначения.
- Литература