logo
Рефераты / Развитие продуктивного мышления на уроках математики

1. Констатирующий этап исследования

В соответствии с целями исследования за основу методики на первом этапе был взят метод Калмыковой З. И. (Калмыкова З. И. Продуктивное мышление как основа обучаемости. М., 1981.).

Нами была проведена модификация этого теста.

В связи с тем, что занятия по экспериментальной программе представилось возможным провести только в двух седьмых классах средней школы № 18, тестирование было проведено в трех классах: двух экспериментальных (52 чел.) и контрольном (28 чел.), т. е. в нем участвовало 80 человек.

В нашей методике моделировалось проблемное обучение, непосредственно направленное на развитие продуктивного мышления. Она была построена в виде естественного обучающего эксперимента, в котором школьники включаются в проблемные ситуации, рассчитанные на самостоятельное решение новых для них учебных задач.

В качестве задачи-проблемы в методике была использована известная физическая закономерность, отражающая условия равновесия рычага. Для ее решения учащиеся располагают необходимыми знаниями. Они не раз встречались с простейшими случаями равновесия — взвешивание на рычажных весах, качание на доске с опорой и т. д. Кроме того, в эксперименте использовалась хорошая модель (демонстрационный рычаг), которая служила наглядной опорой при “открытии” учащимися закономерности. Преимущества данной закономерности в том, что она может быть показана на ряде моделей (рычаг с опорой между линиями действия сил, ворот и т. д.). тем самым есть возможность создать варианты методики, необходимые при повторных испытаниях, что важно для суждения об индивидуальных сдвигах в развитии обучаемости.

Остановимся кратко на характеристике структуры экспериментов и способов обработки получаемых на их основе данных.

Эксперимент включал три этапа: предварительный, основной и вспомогательный. На предварительном этапе экспериментатор обеспечивал школьникам исходный минимум знаний; создавалась установка на решение новой проблемы, вызывалось желание решить ее как можно лучше, без боязни ошибиться при поисках решения. С этой целью на ряде простых арифметических задач экспериментатор напоминал школьникам в (практическом плане) о прямой и обратной зависимости. Далее им говорили, что в связи с работой над новыми вариантами хотят выяснить, возможно ли с учащимися VII класса решать задачи, которые ранее решались только старшеклассниками.

Благодаря такой мотивировке, школьники считали себя участниками эксперимента, не имеющего прямого отношения к их собственным способностям. Если школьник затруднялся в решении, то это ему объясняли трудностью решения задач для данного возраста.

После такой подготовке переходили к основному этапу эксперимента. Учащемуся показывали рычаг, его плечи и силы (гири по 100 г). Экспериментатор говорил школьнику, что тот должен решить ряд практических задач, в которых по величинам сил и плеч догадаться, будет ли рычаг в равновесии. Пользуясь моделью рычага или посмотрев ответ на обороте карточки, он мог проверить, верна ли его догадка. После решения ряда задач ему следовало ответить на более общий вопрос: при каких условиях рычаг в равновесии, то есть самому “открыть” неизвестную ему закономерность, на основе которой можно безошибочно решать такие задачи.

Затем экспериментатор клал перед испытуемыми карточки с записанными на них величинами сил и плеч.

Всего испытуемый практически решал 30 задач, разделенных на 6 циклов. Нечетные циклы имели по 4 задачи, а четные — по 6. Нечетные циклы получили название наглядно-действенных, так как в них от ученика, требовалось сделать заключение об условиях равновесия рычага на основе практических действий с реальной моделью рычага. Получив карточку с условием задач, школьник в соответствии с ним вешал гирьки (каждая по 100 г) на указанном расстоянии от опоры. Экспериментатор в это время удерживал рычаг в равновесии. Учащийся высказывал свое предположение о том, будет ли рычаг в равновесии, после чего экспериментатор отпускал рычаг и учащийся мог проверить правильность своего предположения. Четные циклы названы числовыми, так как в них учащийся имел дело только с числовыми данными, сопоставляя которые он высказывал свою гипотезу о наличии или отсутствии равновесия, а проверял ее по ответу на обороте карточки.

Содержание всех 30 задач было идентичным, изменялись лишь числовые данные. Последние подбирались так, чтобы операции с ними не вызывали никаких трудностей.

После решения задач каждого из 6 циклов школьнику предлагалось попытаться сформулировать искомую закономерность, то есть ответить на вопрос: при каких условиях рычаг будет в равновесии? На основном этапе задачи решались самостоятельно, а подкреплением служило лишь сопоставление гипотезы испытуемого о наличии равновесия с верным ответом. Каждый испытуемый, вне зависимости от правильности ответов решал все 30 задач.

Вспомогательный этап экспериментов рассчитан только на тех, кто на основном этапе не решил проблему, то есть не дал верную формулировку условий равновесия рычага. Его цель — определить меру помощи, которая требуется для решения проблемы.

Остановимся теперь на характеристике тех показателей, по которым мы судили при анализе собранного экспериментального материала о продуктивности мышления школьников давая его качественную характеристику.

Самостоятельность ума мы определяли по тому, справился ли школьник с решением проблемы на основном этапе экспериментов, или ему потребовалась дополнительная помощь, предусмотренная на вспомогательном этапе, и какая именно. Было предусмотрено 4 степени помощи, от минимальной к максимальной.

По степени помощи, необходимой испытуемому для выделения искомой закономерности (условия равновесия рычага) определяли потенциальные возможности учащегося в решении проблемы.

Глубина ума, отражающая степень существенности абстрагируемых признаков и степени их обобщенности, определялась на основе анализа суждений испытуемых при их попытках сформулировать искомую закономерность.

Об осознанности мыслительной деятельности и характере ее реализации можно судить по соотношению хода практического решения задач с высказывании испытуемых о тех признаках, по которым, по их мнению, они определяли наличие или отсутствие равновесия. Отсутствие соответствия между ними дает основание для утверждения о слабой осознанности мыслительной деятельности, о преобладании интуитивно-практического мышления над словесно-логическим; их соответствие говорит об осознанности этой деятельности.

Гибкость ума проявляется в возможности формулировки двух вариантов искомой закономерности (по пропорциональности величин сил и плеч, и по моменту сил), в совершенствовании раз сформулированного суждения, в переходе к суждениям более высокой степени обобщенности, введении в них новых научных терминов вместо житейских, в легкости отказа от ошибочности суждений и т. д.

Устойчивость ума найдет свое выражение в воспроизведении и целесообразной ориентации на найденный в процессе анализа значимый признак равновесия, в возможности одновременной ориентации на оба признака равновесия.

Определяющее условие количественной оценки результатов экспериментов исследуемой стороны мышления — адекватность этой оценке, качественной ее характеристике.

Качественный анализ продуктивного мышления школьников привел к выводу, что наиболее общим, суммарным показателем уровня его развития может служить экономичность мышления, как краткость пути к самостоятельному решению проблемы.

В определении показателя экономичности мышления при решении проблемы мы исходим из следующей гипотезы: чем раньше испытуемый выделит существенные признаки равновесия и будет ориентироваться на них, тем вернее он будет решать задачи. Следовательно, об уровне экономичности можно судить по совокупности баллов, начисленных за верно решенные задачи.

Показатели экономичности мышления располагались в интервале от 0 до 1, мы выделили три их уровня (на основе простого деления общего интервала на 3).

К низшему уровню были отнесены показатели от 0 до 0,33; к среднему от 0,34 до 0,67; к высшему от 0,68 до 1,00.

В ходе проведения эксперимента были получены следующие результаты. 18 человек (35%) экспериментальных классов (классов, в которых в дальнейшем велись занятия по математике по экспериментальной методике) показали достаточно высокие результаты и были отнесены нами к высшему уровню экономичности мышления. По такому же принципу в контрольном классе к высшему уровню экономичности мышления были отнесены 10 учащихся (36%). Большая часть испытуемых из всех классов была отнесена нами к среднему уровню: 26 человек из экспериментальных классов и 14 из контрольного; или соответственно 50% и 50%. Наконец, по 4 человека из каждого класса были отнесены нами к низшему уровню показателя экономичности мышления (15% и 14% соответственно).

Следовательно, исходя из вышеперечисленных данных общий уровень экономичности мышления можно считать достаточно высоким. При этом мы допускаем наличие возможных погрешностей в исполнении, обработке и трактовке данных.

Кроме того, сравнение результатов учащихся трех седьмых классов (так называемых экспериментальных и контрольного) делает допустимым проведение в двух из них занятий по экспериментальной методике и проведение в дальнейшем повторных испытаний с целью выяснить влияние экспериментальной обучающей методики на развитие продуктивного мышления учащихся.