1.6.2 Статистические оценки параметров распределения
В ряде практических случаев ограничиваются нахождением приближенных значений неизвестных параметров распределения случайной величины по опытным данным, т.е. статистических оценок таких числовых характеристик как математическое ожидание, дисперсия и среднее квадратичное отклонение.
Под оценкой параметра обычно понимают величину, принимаемую за неизвестный параметр a.
Требования к оценке параметров. Для того, чтобы оценка параметра имела практическую ценность, она должна (по возможности) обладать свойствами: несмещенности, эффективности и состоятельности.
Оценка называется несмещенной, если ее математическое ожидание равно истинному значению параметра, т.е.
.
Требование несмещенности оценки гарантирует отсутствие систематических ошибок при оценке истинного значения параметра a. Если , то оценка называется смещенной, что приводит к систематическим ошибкам в оценке параметра a.
Несмещенная оценка называется эффективной, если она имеет наименьшее рассеяние среди всех несмещенных оценок параметра a по результатам измерения, т.е.
.
Эффективность оценки означает стремление дисперсии к нулю при неограниченном возрастании объема выборки.
Оценка называется состоятельной, если при неограниченном увеличении числа измерений n она стремится по вероятности к значению a, т.е.
.
Оценка истинного значения параметра a при равноточных измерениях является несмещенной и состоятельной. Если при этом случайные ошибки измерения подчиняются нормальному закону распределения вероятностей, то эта оценка будет и эффективной.
В качестве оценки для математического ожидания применяют среднее арифметическое значений выборки, т.е.
. (5.3)
Эта оценка является несмещенной и состоятельной. Проверка требования эффективности оценки параметра значительно сложнее. Однако если случайная величина распределена по нормальному закону, то оценка математического ожидания m является также эффективной оценкой и имеет минимальную дисперсию
.
Для других же законов распределения эта оценка может и не быть эффективной.
За оценку для дисперсии принимают среднее арифметическое квадратов центрированных значений выборки:
. (5.4)
Эта оценка является состоятельной, но смещенной оценкой дисперсии. Оценка же дисперсии, называемая исправленной дисперсией
, (5.5)
является состоятельной, несмещенной, но и неэффективной. Исправленная дисперсия отличается от статистической дисперсии D*(x) лишь постоянным множителем n/(n-1).
Для нормально распределенных случайных величин эта оценка лишь «асимптотически эффективна», т.е. при неограниченном увеличении числа испытаний n она приближается к минимальному значению.
При достаточно больших значениях n смещенная статистическая дисперсия D*(x) и исправленная дисперсия будут различаться незначительно, поэтому в качестве оценки для дисперсии можно применять любую из них.
- Методические указания
- «Теория вероятностей, математическая статистика и случайные процессы»
- Задание 1
- Задание 2
- Задание 3
- 1 Сведения из теории вероятностей
- 1.1 Законы распределения случайных величин
- 1.2 Плотность распределения случайной непрерывной величины
- 1.3 Закон равномерной плотности
- 1.4 Нормальный закон распределения
- 1.5 Экспоненциальное распределение
- 1.6 Обработка результатов измерений
- 1.6.1 Выборка, ряды распределения
- 1.6.2 Статистические оценки параметров распределения