logo
Лекція № 1 Основні поняття теорії множин

3. Відношення між множинами. Геометричне зображення множин

Означення. Множина називається підмножиною множини , якщо кожен елемент множини належить множині .

Позначення: () – « включається в » ( включає ), де – знак нестрогого включення.

.

Наприклад: , , – підмножина .

Означення. Множини і називаються рівними, якщо вони складаються з одних і тих самих елементів, тобто і .

і .

Якщо и , то називається власною, строгою чи істинною підмножиною . Позначення: , де – знак строгого включення.

Очевидно, що для будь-якої множини і .

і називаються невласними підмножинами множини .

Для кожної множини існує множина, елементами якої є всі її підмножини.

Означення. Множина, елементами якої є всі підмножини множини і тільки вони, називається булеаном (або множиною підмножин) множини і позначається . Відносно елементів булеана множина є універсумом. (Тобто, універсальна множина – це множина, підмножинами якої є всі множини, що розглядаються,)

У разі скінченної підмножини , що складається з елементів, булеан містить елементів:

.

Приклад. Якщо , то . Перша й остання підмножини невласні, інші – власні.

Порожня множина має властивість: при будь-якому . Універсальна множина має властивість: при будь-якому .

Множини і відношення між ними зручно задавати графічно за допомогою так званих діаграм Ейлера-Венна. Діаграми Ейлера-Венна є геометричним зображенням множин. Множина зображується замкненою кривою довільної форми (найчастіше – кругом). Точки, які лежать всередині замкненої кривої, можна розглядати як елементи відповідної множини.

Наприклад:

Універсум на діаграмах Ейлера-Венна зображується у вигляді прямокутника.