logo
шпоры по вышке на 2 семестр

2. Структура общего решения.

Определение. Фундаментальной системой решений линейного однородного дифференциального уравнения n –го порядка на интервале (a, b) называется всякая система n линейно независимых на этом интервале решений уравнения.

Определение. Если из функций yi составить определитель n – го порядка

,

то этот определитель называется определителем Вронского.

( Юзеф Вроньский (1776 – 1853) – польский математик и философ - мистик)

Теорема. Если функции линейно зависимы, то составленный для них определитель Вронского равен нулю.

Теорема. Если функции линейно независимы, то составленный для них определитель Вронского не равен нулю ни в одной точке рассматриваемого интервала.

Теорема. Для того, чтобы система решений линейного однородного дифференциального уравнения была фундаментальной необходимо и достаточно, чтобы составленный для них определитель Вронского был не равен нулю.

Теорема. Если - фундаментальная система решений на интервале (a, b), то общее решение линейного однородного дифференциального уравнения является линейной комбинацией этих решений.

,

где Ciпостоянные коэффициенты.

Применение приведенных выше свойств и теорем рассмотрим на примере линейных однородных дифференциальных уравнений второго порядка.

Общее решение линейного однородного дифференциального

уравнения второго порядка.

Из вышеизложенного видно, что отыскание общего решения линейного однородного дифференциального уравнения сводится к нахождению его фундаментальной системы решений.

Однако, даже для уравнения второго порядка, если коэффициенты р зависят от х, эта задача не может быть решена в общем виде.

Тем не менее, если известно одно ненулевое частное решение, то задача может быть решена.

Теорема. Если задано уравнение вида и известно одно ненулевое решение у = у1, то общее решение может быть найдено по формуле:

Таким образом, для получения общего решения надо подобрать какое – либо частное решение дифференциального уравнения, хотя это бывает часто довольно сложно.

№7.1 Способ подстановки (замены переменных).

Теорема: Если требуется найти интеграл , но сложно отыскать первообразную, то с помощью замены x = (t) и dx = (t)dt получается:

Доказательство: Продифференцируем предлагаемое равенство:

По рассмотренному выше свойству №2 неопределенного интеграла:

f(x)dx = f[(t)](t)dt

что с учетом введенных обозначений и является исходным предположением. Теорема доказана.

Пример. Найти неопределенный интеграл .

Сделаем замену t = sinx, dt = cosxdt.

Пример.

Замена Получаем:

Ниже будут рассмотрены другие примеры применения метода подстановки для различных типов функций.

Yandex.RTB R-A-252273-3