2 Степенным рядом называется ряд вида
.
Для исследования на сходимость степенных рядов удобно использовать признак Даламбера.
Теорема. Если степенной ряд сходится при x = x1 , то он сходится и притом абсолютно для всех .
Таким образом, если степенной ряд сходится в точке х1, то он абсолютно сходится в любой точке интервала длины 2 с центром в точке х = 0.
Следствие. Если при х = х1 ряд расходится, то он расходится для всех .
Таким образом, для каждого степенного ряда существует такое положительное число R, что при всех х таких, что ряд абсолютно сходится, а при всех ряд расходится. При этом число R называется радиусом сходимости. Интервал (-R, R) называется интервалом сходимости.
Отметим, что этот интервал может быть как замкнутым с одной или двух сторон, так и не замкнутым.
Радиус сходимости может быть найден по формуле:
№5 1. И 2 С помощью степенных рядов возможно интегрировать дифференциальные уравнения.
Рассмотрим линейное дифференциальное уравнение вида:
Если все коэффициенты и правая часть этого уравнения разлагаются в сходящиеся в некотором интервале степенные ряды, то существует решение этого уравнения в некоторой малой окрестности нулевой точки, удовлетворяющее начальным условиям.
Это решение можно представить степенным рядом:
Для нахождения решения остается определить неизвестные постоянные ci.
Эта задача решается методом сравнения неопределенных коэффициентов. Записанное выражение для искомой функции подставляем в исходное дифференциальное уравнение, выполняя при этом все необходимые действия со степенными рядами (дифференцирование, сложение, вычитание, умножение и пр.)
Затем приравниваем коэффициенты при одинаковых степенях х в левой и правой частях уравнения. В результате с учетом начальных условий получим систему уравнений, из которой последовательно определяем коэффициенты ci.
Отметим, что этот метод применим и к нелинейным дифференциальным уравнениям. Существует и другой метод решения дифференциальных уравнений с помощью рядов. Он носит название метод последовательного дифференцирования.
Рассмотрим тот же пример. Решение дифференциального уравнения будем искать в виде разложения неизвестной функции в ряд Маклорена.
Если заданные начальные условия y(0)=1, y’(0)=0 подставить в исходное дифференциальное уравнение, получим, что
Далее запишем дифференциальное уравнение в виде и будем последовательно дифференцировать его по х.
После подстановки полученных значений получаем:
№6. 1. Рассмотрим три основных метода интегрирования.
Непосредственное интегрирование.
Метод непосредственного интегрирования основан на предположении о возможном значении первообразной функции с дальнейшей проверкой этого значения дифференцированием. Вообще, заметим, что дифференцирование является мощным инструментом проверки результатов интегрирования.
Способ подстановки (замены переменных).
Теорема: Если требуется найти интеграл , но сложно отыскать первообразную, то с помощью замены x = (t) и dx = (t)dt получается:
Доказательство: Продифференцируем предлагаемое равенство:
По рассмотренному выше свойству №2 неопределенного интеграла:
f(x)dx = f[(t)](t)dt
что с учетом введенных обозначений и является исходным предположением. Теорема доказана.
Интегрирование по частям.
Способ основан на известной формуле производной произведения:
(uv) = uv + vu
где u и v – некоторые функции от х.
В дифференциальной форме: d(uv) = udv + vdu
Проинтегрировав, получаем: , а в соответствии с приведенными выше свойствами неопределенного интеграла:
или ;
Получили формулу интегрирования по частям, которая позволяет находить интегралы многих элементарных функций.
Пример.
Как видно, последовательное применение формулы интегрирования по частям позволяет постепенно упростить функцию и привести интеграл к табличному.
Yandex.RTB R-A-252273-3- Свойства:
- 2 Степенным рядом называется ряд вида
- 2. Структура общего решения.
- 2.Общее решение линейного однородного дифференциального
- 2.Дифференциальные уравнения первого порядка.
- 2…. Определение. Нахождение решения уравнения , удовлетворяющего начальным условиям , называется решением задачи Коши.
- . Тригонометрическая подстановка.
- 2…… Однородные уравнения.
- 2….. Линейные уравнения.