shpori (1) / shpori (1)
3.Сортировка слиянием
1.Делим массив на 2 части
2.Рекурсивно сортируем каждую часть
3.Объединяем обе части так, чтобы получить отсортированный массив
Трудоемкость - O(nlogn)
Теорема. Не существует алгоритма сортировки со
сложностью меньшей, чем C*nlogn.
Сложность задачи – это сложность лучшего алгоритма
для ее решения.
Теорема. Сложность задачи сортировки - nlogn
Содержание
- 1.Трудоемкость алгоритмов
- 2.Алгоритмы сортировки
- 3.Сортировка слиянием
- 4.Бинарные поисковые деревья
- 5.2-3-4 Деревья
- 6.Хеширование
- 7. Поиск подстроки. Алгоритм Кнута-Морриса- Пратта.
- 8. Графы. Структуры данных для представления графов
- 9. Алгоритм нахождения Эйлерова цикла
- 10 .Поиск в ширину(волновой алгоритм)
- 11.Поиск в глубину
- 12.Жадные алгоритмы и матроиды
- 13.Задача об остовном дереве. Алгоритмы Прима и Краскала, их реализация
- 14. Алгоритм Дийкстры
- 15. Алгоритм Флойда
- 16. Паросочетания в двудольных графах
- 17. Потоки и разрезы в сетях. Алгоритм Форда-Фалкерсона
- 18. Задача о рюкзаке
- 21. Классы p и np. Полиномиальное сведение.
- 22. Np- полные задачи. Теорема Кука-Карпа-Левина. Np-полнота задачи о клике
- 23. Алгоритмы с гарантированной оценкой точности. Задача упаковки
- 24.Метод локального поиска и поиска с запретами. Задача о максимальном разрезе.
- 25.Метод ветвей и границ. Задача коммивояжера.
- 26. Задача коммивояжера с неравенством треугольника. Алгоритм Кристофидеса
- 27.Задача о независимом множестве, точные и эвристические алгоритмы ее решения
- 28.Задача о раскраске графа, точные и эвристические алгоритмы ее решения.
- 31.Задача о раскраске хордальных графов
- 32.Генетические алгоритмы
- 33. Page Rank
- 34 Криптосистема с открытым ключом. Криптосистема rsa
- 35.Задача разделения секрета.
- 36. Алгоритмы сжатия информации