1. Основные логические функции
Обозначим через E = {0, 1} – множество, состоящее из двух чисел. Числа 0 и 1 являются основными в дискретной математике. Часто они интерпретируются как “ложь” (л ={0}) и как “истина” (и ={1}). Декартово произведение E* Е* Е* …* E=En является множеством упорядоченных наборов, состоящих из п чисел (нулей и единиц). Как известно, Еп cодержит 2п элементов (упорядоченных наборов). Само множество Еп можно естественным образом упорядочить, для чего достаточно считать каждый набор двоичным разложением целого числа k (0 k 2n–1), записанного с помощью п знаков. Упорядочение наборов проводится по числу k .
Например, при п = 3 множество Е3 может быть упорядочено следующим образом.
0 | 000 |
1 | 001 |
2 | 010 |
3 | 011 |
4 | 100 |
5 | 101 |
6 | 110 |
7 | 111 |
Такое упорядочение еще называют “скользящей единицей”.
Этот естественный порядок элементов Еп является самым распространенным, но, как будет видно в разд. 5, иногда удобен другой способ упорядочения.
Логической ( булевой) функцией (или просто функцией) n переменных y = f(x1, x2, …, xn) называется такая функция, у которой все переменные и сама функция могут принимать только два значения: 0 и 1.
Переменные, которые могут принимать только два значения 0 и 1 называются логическими переменными (или просто переменными). Заметим, что логическая переменная х может подразумевать под числом 0 некоторое высказывание, которое ложно, и под числом 1 высказывание, которое истинно. Например, высказывание “Волга впадает в Каспийское море” является истинным и, значит, с точки зрения дискретной математики принимает значение 1, а высказывание “в неделе 8 дней” является ложным, и переменная, которая заменяет это высказывание, принимает значение 0. Имеется много высказываний, которые либо истинны, либо ложны, но о которых мы не знаем, что имеет место на самом деле. Например, высказывание “студент Петров (имеется в виду конкретный человек) имеет дома компьютер”. Такого рода высказывания требуют проверки (конечно, если нам важен этот факт). Поэтому считаем, что переменная, заменяющая это высказывание может принимать значение 0 или 1.
Из определения логической функции следует, что функция п переменных – это отображение Еп в Е, которое можно задать непосредственно таблицей, называемойтаблицей истинности данной функции. Например, функция трех переменных f(x,y,z) может определяться следующей таблицей истинности.
x | y | z | f(x,y,z) |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
0 | 1 | 0 | 1 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 0 |
1 | 1 | 1 | 0 |
Это означает, что f(0,0,0) = 1, f(0,0,1) = 0, f(0,1,0) = 1 и т. д.
- Cодержание:
- Логические (булевы) функции
- 1. Основные логические функции
- Две функции равны, если совпадают их таблицы истинности (на объединенном наборе переменных).
- 2. Свойства конъюнкции, дизъюнкции и отрицания
- 3. Днф, сднф, кнф, скнф
- 4. Представление логических функций в виде сднф (скнф)
- 5. Нахождение сокращенной днф по таблице истинности (карты Карно)
- 6. Полиномы Жегалкина
- 7. Суперпозиция функций. Замыкание набора функций. Замкнутые классы функций. Полные наборы. Базисы
- 8. Некоторые приложения теории булевых функций
- 8.1. Функциональные элементы и схемы
- 8.2. Решение логических задач с помощью теории булевых функций
- Элементы теории графов
- 9. Общие понятия теории графов
- 10. Эйлеровы и полуэйлеровы графы
- 11. Матрицы и графы. Нахождение путей и сечений с помощью структурной матрицы
- 12. Сети, потоки в сетях. Теорема Форда – Фалкерсона
- 13. Раскраска графа
- 14. Деревья и их простейшие свойства
- 15. Решение типовых задач
- Литература