logo
art218_089

Контрольные мероприятия и сроки их проведения

1. ДЗ №1 «Элементарные функции и их графики»

Срок выдачи 1 неделя, срок сдачи - 4 неделя

2. ДЗ №2 «Пределы и непрерывность»

Срок выдачи 1 неделя, срок сдачи - 9 неделя

Контроль по модулю №1 (РК №1) «Пределы и непрерывность».

Срок проведения – 9 неделя

Модуль 2: Дифференциальное исчисление функций одного переменного

Лекции

Лекция 9-10. Производная функции в точке, ее физический смысл. Касательная, геометрический смысл производной. Уравнения касательной и нормали к графику функции в заданной точке. Бесконечная производная, односторонние производные и их геометрический смысл. Дифференцируемость функции в точке, эквивалентность дифференцируемости существованию в точке конечной производной. Непрерывность дифференцируемой функции. Основные правила дифференцирования функций.

ОЛ-2 гл. 1- 2; ОЛ-3, гл. III, §§ 1–15, 19.

Лекции 11. Формулы дифференцирования основных элементарных функций. Логарифмическая производная и ее применение. Производные высших порядков. Дифференцирование функции, заданной параметрически или неявно.

ОЛ-2 гл. 2, пп. 4.1–4.4; ОЛ-3, гл. III, §§ 18, 19, 22, 25.

Лекция 12. Дифференциал функции, его геометрический смысл. Правила вычисления дифференциалов. Инвариантность формы первого дифференциала. Применение дифференциалов к приближенным вычислениям. Дифференциалы высших порядков.

ОЛ-2, гл. 3, п. 4.5; ОЛ-3, гл. III, §§ 20, 21, 23.

Лекция 13. Основные теоремы дифференциального исчисления: Ферма, Ролля, Лагранжа и Коши. Теорема Бернулли — Лопиталя и раскрытие неопределенностей (док-во только для [0/0]). Сравнение роста показательной, степенной и логарифмической функций в бесконечности.

ОЛ-2, гл. 5, 6; ОЛ-3, гл. IV, §§ 1–5.

Лекции 14. Формула Тейлора с остаточным членом в форме Лагранжа и Пеано. Формула Маклорена и представление по этой формуле некоторых элементарных функций. Использование формулы Тейлора в приближенных вычислениях и для вычисления пределов.

ОЛ-2, гл.7; ОЛ-3, гл. IV, §§ 6, 7.

Лекции 15-16. Необходимое и достаточное условия монотонности дифференцируемой функции на промежутке. Экстремум функции. Необходимое условие экстремума. Стационарные и критические точки функции. Достаточные условия экстремума (по первой и второй производным, по производной высшего порядка). Выпуклость (вверх и вниз) функции, точки перегиба. Достаточные условия выпуклости дважды дифференцируемой функции. Необходимое условие существования точки перегиба. Достаточное условие существования точки перегиба. Схема полного исследования функции и построения ее графика.

ОЛ-2, гл.8; ОЛ-3, гл. V, §§ 2–9, 11.

Лекция 17. Резерв.