Деревья блоков и точек сочленения
Связный граф с большим числом точек сочленения похож на дерево. Эту черту графа можно оттенить четче, если сопоставить с каждым связным графом соответствующее дерево.
Для связного графа G с множеством блоков {Bi} и множеством точек сочленения {сj} граф блоков и точек сочлененияbc (G) определяется как граф, у которого множеством вершин служит {В,} U {Cj} и две вершины смежны, если одна соответствует блоку Bi,
а другая - точке сочленения сj, причем сj, принадлежит Вj. Таким образом,
bc(G) - двудольный граф. Это понятие было введено в работе Харари и Принса, а также в статье Галлаи.
Теорема.G - граф блоков и точек сочленения некоторого графа Н тогда и только тогда, когда он является деревом, в котором расстояние между любыми двумя висячими вершинами четно.
Имея в виду эту теорему, мы будем говорить о дереве блоков и точек сочленения графа.
- Типы графов
- Маршруты и связность
- Степени
- Задача Рамсея
- Экстремальные графы
- Графы пересечений
- Операции над графами
- Графы блоков и точек сочленения
- Точки сочленения, мосты и блоки
- Деревья
- Описание деревьев
- Центры и центроиды
- Деревья блоков и точек сочленения
- Независимые циклы и коциклы
- Матроиды
- Обходы графов
- Эйлеровы графы
- Гамильтоновы графы
- Реберные графы
- Некоторые свойства реберных графов
- Характеризация реберных графов
- Специальные реберные графы
- Реберные графы и обходы
- Тотальные графы
- Раскраски
- Хроматическое число
- Теорема о пяти красках
- Гипотеза четырех красок
- Однозначно раскрашиваемые графы
- Критические графы
- Гомоморфизмы
- Хроматический многочлен
- Матрицы
- Матрица смежностей
- Матрица инциденций
- Матрица циклов
- Обзор дополнительных свойств матроидов
- Связность
- Связность и реберная связность
- Орграфы
- Орграфы и соединимость
- Ориентированная двойственность и бесконтурные орграфы
- Орграфы и матрицы
- Турниры
- Обзор по проблеме востановления турниров
- Волновой алгоритм
- Алгоритм Дейкстры
- Алгоритм Флойда
- Алгоритм Йена
- Алгоритм Краскала