Матрицы и операции над ними.
Определение. Матрицей называется множество чисел, которое составляет прямоугольную таблицу, состоящее из m строк и n столбцов
коротко матрицу обозначают так:
где элементы данной матрицы, I – номер строки, j – номер столбца.
Если в матрице число строк равно числу столбцов (m = n), то матрица называется квадратной n-го порядка, а в противном случае – прямоугольной.
Если m=1 и n >1, то получаем однострочную матрицу
которая называется вектор-строкой, если, же m>1 и n=1, то получаем одностолбцовую матрицу
,
которая называется вектор-столбцом.
Две матрицы и равны, если равны между собой элементы, стоящие на одинаковых местах, то есть если
при всех i и j (при этом число строк (столбцов) матриц A и B должно быть одинаковым).
1. Суммой двух матриц A=(aij) и B=(bij) с одинаковым количеством m строк и n столбцов называется матрица C=(cij), элементы которой определяются равенством
Сумму матриц обозначают C=A+B.
Пример.
.
20. Произведением матрицы A=(aij) на число λ называется матрица, у которой каждый элемент равен произведению соответствующего элемента матрицы A на число λ:
λA=λ(aij)=(λaij), (i =1,2…,m ; j=1,2…,n ).
Пример.
30. Произведением матрицы A=(aij), имеющей m строк и k столбцов, на матрицу B=(bij), имеющей k строк и n столбцов, называется матрица C=(cij), имеющая m строк и n столбцов, у которой элемент cij равен сумме произведений элементов i-ой строки матрицы A и j-го столбца матрицы B, то есть
При этом число столбцов матрицы A должно быть равно числу строк матрицы B. В противном случае произведение не определено. Произведение матриц обозначается A*B=C.
Пример.
Для произведения матриц не выполняется равенство между матрицами A*B и B* A, в общем случае одна из них может быть не определена.
Умножение квадратной матрицы любого порядка на соответствующую единичную матрицу не меняет матрицу.
Пример. Пусть , , тогда согласно правилу умножения матриц имеем
=
и
,
откуда заключаем, что
и
Возникает вопрос, можно ли для квадратной матрицы А подобрать некоторую матрицу, такую что умножив на нее матрицу А в результате получить единичную матрицу Е, такую матрицу называют обратной к матрице А. Ответ на этот вопрос мы дадим на лекции 9.
- Учебная программа дисциплины
- 2. Данные о дисциплине:
- Пререквизиты:
- Краткое описание дисциплины
- График выполнения и сдачи заданий по дисциплине
- 1.7 Список литературы
- 1.8 Оценка знаний согласно шкале рейтинга
- 1.9 Политика и процедура
- Учебно-методические материалы по дисциплине
- 2.3 Планы практических занятий
- Оценка участия в семинарах
- Планы домашних заданий
- Содержание домашних заданий
- Оценка домашних заданий
- Планы занятий в рамках самостоятельной работы студентов под руководством преподавателя Содержание заданий для срсп
- Оценка заданий для срсп
- Планы занятий в рамках самостоятельной работы студентов
- Вопросник для коллоквиума
- Матрицы и операции над ними.
- Определители и их свойства.
- Системы линейных алгебраических уравнений.
- Векторы. Линейные операции над векторами.
- Нелиейные операции над векторами. Метод координат
- Прямая на плоскости.
- Кривые 2-го порядка.
- Уравнение плоскости.
- Прямая в пространстве. Взаимное расположение прямой и плоскости в пространстве.
- Функция. Действительные числа. Предел функции. Односторонние пределы функции.
- Элементарные функции
- Предел функции. Основные теоремы о пределах
- Замечательные пределы. Сравнение бесконечно малых функций. Широко используются следующие два предела
- Непрерывность функции. Классификация точек разрыва функции.
- Производная. Правила и формулы дифференцирования.
- Производные высших порядков. Дифференциалы первого и высших порядков и их приложения.
- Основные теоремы дифференциального исчисления (Ферма, Ролля, Лагранжа, Коши). Правило Лопиталя. Приложения производной и исследование функции.
- Исследование поведения функции и построение их графиков.
- Выпуклость графика функции. Точки перегиба
- Асимтоты.
- Первообразная. Неопределенный интеграл и его свойства.
- Интегрирование рациональных функций.
- Интегрирование иррациональных и трансцендентных функций.
- Определенный интеграл. Условия существования определенного интеграла. Свойства определенного интеграла.
- Проведя в точках деления a,b прямые, параллельные оси ординат, разобьем криволинейную трапецию на n частичных трапеций. В каждом частичном интервале возьмем точки 1,2,…,т, так что
- Оценка интеграла. Теорема о среднем. Формула Ньютона-Лейбница. Замена переменных и интегрирование по частям в определенном интеграле.
- Приложения определенного интеграла.
- Частные производные и дифференцируемость функций нескольких переменных.
- Частные производные высших порядков
- Лекции 29. Дифференциальные уравнения. Дифференциальные уравнения I порядка.
- Линейные дифференциальные уравнения второго порядка. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами.
- Числовые ряды.
- Признаки сходимости рядов
- Степенные ряды. Интервал сходимости степенного ряда. Разложение функций в степенные ряды.
- Свойства степенных рядов.
- Двойные и тройные интегралы.
- Векторные и скалярные поля
- Криволинейные интегралы
- Случайные события. Определение вероятности.
- Теоремы сложения и умножения вероятностей. Формула полной вероятности. Формула Байеса.
- Формула Бернулли. Предельные теоремы.
- Случайные величины и их числовые характеристики.
- Задачи математической статистики. Выборочный метод. Эмпирическая функция распределения. Полигон и гистограмма.
- Параметры распределения.
- Точечные и интервальные оценки.
- Элементы теории корреляции.
- Статистическая проверка статистических гипотез.