Степенные ряды. Интервал сходимости степенного ряда. Разложение функций в степенные ряды.
Степенным рядом называется ряд вида:
,
где называются коэффициентами степенного ряда.
Придавая х различные числовые значения, будем получать различные числовые ряды, которые могут оказаться сходящимися или расходящимися. Множество тех значений х, при которых степенной ряд сходится, называется областью его сходимости. Это множество всегда не пусто, так как любой степенной ряд сходится при .
Очевидно, что частичная сумма степенного ряда
является функцией переменной х. Поэтому и сумма ряда S также является некоторой функцией переменной х, определенной в области сходимости ряда: .
Рассмотрим теорему, имеющую важное значение в теории степенных рядов и касающуюся области сходимости степенного ряда.
Теорема Абеля. (Абель Нильс Хенрик (1802—1829) — норвежский математик).
1) Если степенной ряд сходится при , то он сходится, и притом абсолютно, для всех х, удовлетворяющих условию ;
2) если степенной ряд расходится при , то он расходится для всех х, удовлетворяющих условию .
Теорема Абеля утверждает, что если - точка сходимости степенного ряда, то во всех точках, расположенных на интервале ( ) этот ряд сходится абсолютно, а если - точка расходимости степенного ряда, то во всех точках, расположенных вне интервала ( ) ряд расходится.
Отсюда вытекает следующая теорема:
Если ряд сходится не при всех значениях х и не только при , то существует число такое, что ряд абсолютно сходится при и расходится npu .
Интервал называется интервалом сходимости степенного ряда. Число R называется радиусом сходимости степенного ряда. Отметим, что интервал сходимости у некоторых рядов охватывает всю числовую прямую (в этом случае пишут ), у других вырождается в одну точку ( ).
Итак, всякий степенной ряд имеет свой радиус сходимости R. При ряд может либо сходиться, либо расходиться. Этот вопрос решается для каждого конкретного ряда.
Приведем способ определения радиуса сходимости степенного ряда по признаку Даламбера.
Если существует предел , то радиус сходимости ряда равен .
Yandex.RTB R-A-252273-3
- Учебная программа дисциплины
- 2. Данные о дисциплине:
- Пререквизиты:
- Краткое описание дисциплины
- График выполнения и сдачи заданий по дисциплине
- 1.7 Список литературы
- 1.8 Оценка знаний согласно шкале рейтинга
- 1.9 Политика и процедура
- Учебно-методические материалы по дисциплине
- 2.3 Планы практических занятий
- Оценка участия в семинарах
- Планы домашних заданий
- Содержание домашних заданий
- Оценка домашних заданий
- Планы занятий в рамках самостоятельной работы студентов под руководством преподавателя Содержание заданий для срсп
- Оценка заданий для срсп
- Планы занятий в рамках самостоятельной работы студентов
- Вопросник для коллоквиума
- Матрицы и операции над ними.
- Определители и их свойства.
- Системы линейных алгебраических уравнений.
- Векторы. Линейные операции над векторами.
- Нелиейные операции над векторами. Метод координат
- Прямая на плоскости.
- Кривые 2-го порядка.
- Уравнение плоскости.
- Прямая в пространстве. Взаимное расположение прямой и плоскости в пространстве.
- Функция. Действительные числа. Предел функции. Односторонние пределы функции.
- Элементарные функции
- Предел функции. Основные теоремы о пределах
- Замечательные пределы. Сравнение бесконечно малых функций. Широко используются следующие два предела
- Непрерывность функции. Классификация точек разрыва функции.
- Производная. Правила и формулы дифференцирования.
- Производные высших порядков. Дифференциалы первого и высших порядков и их приложения.
- Основные теоремы дифференциального исчисления (Ферма, Ролля, Лагранжа, Коши). Правило Лопиталя. Приложения производной и исследование функции.
- Исследование поведения функции и построение их графиков.
- Выпуклость графика функции. Точки перегиба
- Асимтоты.
- Первообразная. Неопределенный интеграл и его свойства.
- Интегрирование рациональных функций.
- Интегрирование иррациональных и трансцендентных функций.
- Определенный интеграл. Условия существования определенного интеграла. Свойства определенного интеграла.
- Проведя в точках деления a,b прямые, параллельные оси ординат, разобьем криволинейную трапецию на n частичных трапеций. В каждом частичном интервале возьмем точки 1,2,…,т, так что
- Оценка интеграла. Теорема о среднем. Формула Ньютона-Лейбница. Замена переменных и интегрирование по частям в определенном интеграле.
- Приложения определенного интеграла.
- Частные производные и дифференцируемость функций нескольких переменных.
- Частные производные высших порядков
- Лекции 29. Дифференциальные уравнения. Дифференциальные уравнения I порядка.
- Линейные дифференциальные уравнения второго порядка. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами.
- Числовые ряды.
- Признаки сходимости рядов
- Степенные ряды. Интервал сходимости степенного ряда. Разложение функций в степенные ряды.
- Свойства степенных рядов.
- Двойные и тройные интегралы.
- Векторные и скалярные поля
- Криволинейные интегралы
- Случайные события. Определение вероятности.
- Теоремы сложения и умножения вероятностей. Формула полной вероятности. Формула Байеса.
- Формула Бернулли. Предельные теоремы.
- Случайные величины и их числовые характеристики.
- Задачи математической статистики. Выборочный метод. Эмпирическая функция распределения. Полигон и гистограмма.
- Параметры распределения.
- Точечные и интервальные оценки.
- Элементы теории корреляции.
- Статистическая проверка статистических гипотез.