Нелиейные операции над векторами. Метод координат
Скалярным произведением двух векторов и называется число, определяемое равенством
.
Свойства скалярного произведения векторов:
. (переместительное свойство)
.
.
.
. , если
В екторным произведением двух векторов называется вектор, длина которого равна
,где - угол между
векторами .
И который направлен перпендикулярно
векторам Векторы образуют
так называемую правую тройку.
Рис. 1
Вектор находится по формуле:
(5)
Г еометрически равна площади параллелограмма, построенного на векторах
С мешанное произведение векторов , , есть число, определяемое формулой:
Модуль смешанного произведения равен объёму параллелепипеда, построенного на векторах
Метод координат.
Аналитическая геометрия изучает геометрические образы алгебраическими методами. Аппаратом аналитической геометрии является метод координат, разработанный Декартом в XVII веке. В основе метода координат лежит понятие системы координат.
Две взаимно перпендикулярные оси Ох и Оу, имеющие общее начало О и одинаковую масштабную единицу, образуют прямоугольную систему координат. Ось Ох называется осью абсцисс, ось Оу – осью ординат.
В прямоугольной системе координат Оху точку М, имеющую координаты х и у, обозначают М(х; у), где х – абсцисса точки, а у – её ордината.
Пусть в прямоугольной системе координат заданы точки М1(х1, у1) и М2(х2;у2). Расстояние между ними определяется по формуле:
(1)
Три точки плоскости, не лежащие на одной прямой образуют треугольник.
Теорема. Для любых трех точек А(х1;у1),В(х2;у2) и С(х3;у3), не лежащих на одной прямой, площадь S треугольника АВС вычисляется по формуле
(2)
Пусть на плоскости дан произвольный отрезок М1М2 и пусть М – любая точка этого отрезка, отличная от точки М2 .
Координаты точки М(х;у) делящей отрезок между точками М1(х1;у1) и М2(х2;у2) в заданном отношении λ, определяются по формулам:
(3)
При λ=1 получаем формулы для координат середины отрезка:
(4)
В полярной системе координат положение точки М на плоскости определяется её расстоянием |ОМ|=ρ от полюса О (ρ–полярный радиус-вектор точки) и углом φ, образованным отрезком ОМ с полярной осью ОЕ Угол φ считается положительным при отсчете от полярной оси против часовой стрелки.
Прямоугольные координаты х и у точки М и её полярные координаты ρ и φ связаны следующими формулами
Лекция 4
Yandex.RTB R-A-252273-3- Учебная программа дисциплины
- 2. Данные о дисциплине:
- Пререквизиты:
- Краткое описание дисциплины
- График выполнения и сдачи заданий по дисциплине
- 1.7 Список литературы
- 1.8 Оценка знаний согласно шкале рейтинга
- 1.9 Политика и процедура
- Учебно-методические материалы по дисциплине
- 2.3 Планы практических занятий
- Оценка участия в семинарах
- Планы домашних заданий
- Содержание домашних заданий
- Оценка домашних заданий
- Планы занятий в рамках самостоятельной работы студентов под руководством преподавателя Содержание заданий для срсп
- Оценка заданий для срсп
- Планы занятий в рамках самостоятельной работы студентов
- Вопросник для коллоквиума
- Матрицы и операции над ними.
- Определители и их свойства.
- Системы линейных алгебраических уравнений.
- Векторы. Линейные операции над векторами.
- Нелиейные операции над векторами. Метод координат
- Прямая на плоскости.
- Кривые 2-го порядка.
- Уравнение плоскости.
- Прямая в пространстве. Взаимное расположение прямой и плоскости в пространстве.
- Функция. Действительные числа. Предел функции. Односторонние пределы функции.
- Элементарные функции
- Предел функции. Основные теоремы о пределах
- Замечательные пределы. Сравнение бесконечно малых функций. Широко используются следующие два предела
- Непрерывность функции. Классификация точек разрыва функции.
- Производная. Правила и формулы дифференцирования.
- Производные высших порядков. Дифференциалы первого и высших порядков и их приложения.
- Основные теоремы дифференциального исчисления (Ферма, Ролля, Лагранжа, Коши). Правило Лопиталя. Приложения производной и исследование функции.
- Исследование поведения функции и построение их графиков.
- Выпуклость графика функции. Точки перегиба
- Асимтоты.
- Первообразная. Неопределенный интеграл и его свойства.
- Интегрирование рациональных функций.
- Интегрирование иррациональных и трансцендентных функций.
- Определенный интеграл. Условия существования определенного интеграла. Свойства определенного интеграла.
- Проведя в точках деления a,b прямые, параллельные оси ординат, разобьем криволинейную трапецию на n частичных трапеций. В каждом частичном интервале возьмем точки 1,2,…,т, так что
- Оценка интеграла. Теорема о среднем. Формула Ньютона-Лейбница. Замена переменных и интегрирование по частям в определенном интеграле.
- Приложения определенного интеграла.
- Частные производные и дифференцируемость функций нескольких переменных.
- Частные производные высших порядков
- Лекции 29. Дифференциальные уравнения. Дифференциальные уравнения I порядка.
- Линейные дифференциальные уравнения второго порядка. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами.
- Числовые ряды.
- Признаки сходимости рядов
- Степенные ряды. Интервал сходимости степенного ряда. Разложение функций в степенные ряды.
- Свойства степенных рядов.
- Двойные и тройные интегралы.
- Векторные и скалярные поля
- Криволинейные интегралы
- Случайные события. Определение вероятности.
- Теоремы сложения и умножения вероятностей. Формула полной вероятности. Формула Байеса.
- Формула Бернулли. Предельные теоремы.
- Случайные величины и их числовые характеристики.
- Задачи математической статистики. Выборочный метод. Эмпирическая функция распределения. Полигон и гистограмма.
- Параметры распределения.
- Точечные и интервальные оценки.
- Элементы теории корреляции.
- Статистическая проверка статистических гипотез.