1.8 Оценка знаний согласно шкале рейтинга
-
Формы контроля
Максимальный балл
Проходной балл
1. Текущий контроль, в том числе:
20
10
- участие на практических занятиях (10% от оценки текущего контроля)
2
- проверка домашних заданий (15% от оценки текущего контроля)
3
- проверка заданий для СРСП (70% от оценки текущего контроля)
14
- посещение лекций, практических занятий и СРСП (5% от оценки текущего контроля)
1
2. Промежуточный контроль (коллоквиум)
30
15
3. Итоговый контроль (экзамен, состоящий из экзаменационных билетов)
50
25
ВСЕГО
100
50
Баллы, получаемые студентами на стадиях текущего, промежуточного и итогового контроля, могут быть распределены в зависимости от уровня усвоения программного материала следующим образом:
Оценка по буквенной системе | Баллы | %-ное содержание | Оценка в традиционной системе |
А | 4,0 | 95-100 | отлично |
А- | 3,67 | 90-94 | |
В+ | 3,33 | 85-89 | хорошо |
В | 3,0 | 80-84 | |
В- | 2,67 | 75-79 | |
С+ | 2,33 | 70-74 | удовлетворительно |
С | 2,0 | 65-69 | |
С- | 1,67 | 60-64 | |
D+ | 1,33 | 55-59 | |
D | 1,0 | 50-54 | |
F | 0 | 0-49 | неудовлетворительно |
- Учебная программа дисциплины
- 2. Данные о дисциплине:
- Пререквизиты:
- Краткое описание дисциплины
- График выполнения и сдачи заданий по дисциплине
- 1.7 Список литературы
- 1.8 Оценка знаний согласно шкале рейтинга
- 1.9 Политика и процедура
- Учебно-методические материалы по дисциплине
- 2.3 Планы практических занятий
- Оценка участия в семинарах
- Планы домашних заданий
- Содержание домашних заданий
- Оценка домашних заданий
- Планы занятий в рамках самостоятельной работы студентов под руководством преподавателя Содержание заданий для срсп
- Оценка заданий для срсп
- Планы занятий в рамках самостоятельной работы студентов
- Вопросник для коллоквиума
- Матрицы и операции над ними.
- Определители и их свойства.
- Системы линейных алгебраических уравнений.
- Векторы. Линейные операции над векторами.
- Нелиейные операции над векторами. Метод координат
- Прямая на плоскости.
- Кривые 2-го порядка.
- Уравнение плоскости.
- Прямая в пространстве. Взаимное расположение прямой и плоскости в пространстве.
- Функция. Действительные числа. Предел функции. Односторонние пределы функции.
- Элементарные функции
- Предел функции. Основные теоремы о пределах
- Замечательные пределы. Сравнение бесконечно малых функций. Широко используются следующие два предела
- Непрерывность функции. Классификация точек разрыва функции.
- Производная. Правила и формулы дифференцирования.
- Производные высших порядков. Дифференциалы первого и высших порядков и их приложения.
- Основные теоремы дифференциального исчисления (Ферма, Ролля, Лагранжа, Коши). Правило Лопиталя. Приложения производной и исследование функции.
- Исследование поведения функции и построение их графиков.
- Выпуклость графика функции. Точки перегиба
- Асимтоты.
- Первообразная. Неопределенный интеграл и его свойства.
- Интегрирование рациональных функций.
- Интегрирование иррациональных и трансцендентных функций.
- Определенный интеграл. Условия существования определенного интеграла. Свойства определенного интеграла.
- Проведя в точках деления a,b прямые, параллельные оси ординат, разобьем криволинейную трапецию на n частичных трапеций. В каждом частичном интервале возьмем точки 1,2,…,т, так что
- Оценка интеграла. Теорема о среднем. Формула Ньютона-Лейбница. Замена переменных и интегрирование по частям в определенном интеграле.
- Приложения определенного интеграла.
- Частные производные и дифференцируемость функций нескольких переменных.
- Частные производные высших порядков
- Лекции 29. Дифференциальные уравнения. Дифференциальные уравнения I порядка.
- Линейные дифференциальные уравнения второго порядка. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами.
- Числовые ряды.
- Признаки сходимости рядов
- Степенные ряды. Интервал сходимости степенного ряда. Разложение функций в степенные ряды.
- Свойства степенных рядов.
- Двойные и тройные интегралы.
- Векторные и скалярные поля
- Криволинейные интегралы
- Случайные события. Определение вероятности.
- Теоремы сложения и умножения вероятностей. Формула полной вероятности. Формула Байеса.
- Формула Бернулли. Предельные теоремы.
- Случайные величины и их числовые характеристики.
- Задачи математической статистики. Выборочный метод. Эмпирическая функция распределения. Полигон и гистограмма.
- Параметры распределения.
- Точечные и интервальные оценки.
- Элементы теории корреляции.
- Статистическая проверка статистических гипотез.