logo search
УМКД по ВМ

Замечательные пределы. Сравнение бесконечно малых функций. Широко используются следующие два предела

1)

2) ,

которые называются соответственно первым и вторым замечательными пределами.

Если (т. Е. для любого >0 существует число >0, такое что при 0< < справедливо неравенство < ), то называется бесконечно малой функцией или величиной при х .

Для сравнения двух бесконечно малых функций и при х находят предел их отношения

(1)

Если С 0, то и называются бесконечно малыми величинами одного и того же порядка; если С=0, то называется бесконечно малой более высокого порядка по сравнению с , а - бесконечно малой более низкого порядка по сравнению с .

Если (0< < ), то называется бесконечно малой порядка k, по сравнению с при х .

Если , то бесконечно малые и при х называются эквивалентными (равносильными) величинами и обозначают ~ .

Например, при х ~ , ~ х, ~ х, —1~ ..

Легко доказать, что предел отношения бесконечно малых функций и при х равен пределу отношения эквивалентных им бесконечно малых функций и при х , т.е. верны предельные равенства

Лекция 11.