logo search
Дискретная математика / Текст лекций по курсу ДМ

Алгоритм Флойда

Путь минимальной суммарной длины во взвешенном графе с произвольными весами для всех пар вершин. (алгоритм Флойда)

Процедура находит пути минимального веса в графе G=(V,E) заданном весовой матрицей w у которой элемент wij равен весу ребра соединяющего i-ую и j-ую вершины. При этом полагаем, что W[i,j]=0 для всех i. Путь ищется для всех пар вершин графа. Для бесконечности используется число GM его можно задавать в зависимости от конкретной задачи.

Следует заметить, что если в графе существует контур отрицательной суммарной длины, то вес любого пути, проходящего через вершину из этого контура, можно сделать сколь угодно малой, "прокрутившись" в контуре необходимое количество раз. Поэтому поставленная задача разрешима не всегда. В случае, описанном выше, алгоритм Флойда прекращает свою работу. Останавливаясь подробнее надо заметить, что если граф неориентированный (W[i,j]- симметрична), то ребро с отрицательным весом является как раз таким контуром (туда-сюда можно бегать пока не сделаем вес достаточно малым)

Алгоритм Флойда предполагает последовательное преобразование матрицы весов W. В конечном итоге получаем матрицу, элементы d[i,j] которой представляют собой вес минимального пути соединяющего i и j вершины. Рассмотрим преобразования матрицы весов:

D0=W

dm+1[i,j]=min{dm[i,j],dm[i,(m+1)] +dm[(m+1),j]}, гдеi<>j;dm+1[i,i]=0.

преобразование проделывается для m=1..n, где n - мощность множества вершин графа. Если на некотором шаге получим отрицательное dm[i, m]+dm[m, i] для какого-нибудь i, то в графе существует контур отрицательного веса, проходящий через вершину i и задача не разрешима.

На выходе получаем матрицу D минимальных весов и матрицу P при помощи, которой можно восстановить путь минимального веса следующим образом: значение p[i,j] будет равно номеру предпоследней вершины в пути между i и j (либо p[i, j]=i, если путь не существует). Переменная s на выходе равна 1, если алгоритм отработал полностью, и нулю, если в ходе работы алгоритма найден контур отрицательного веса.

Заметим, что если граф неориентированный, то W а также все матрицы получаемые в результате преобразований симметричны и следовательно достаточно вычислять только элементы расположенные выше главной диагонали.