logo
Алгоритм фильтрации, пример на основе БПФ

ВВЕДЕНИЕ

В основе преобразования Фурье (ПФ) лежит чрезвычайно простая, но исключительно плодотворная идея - почти любую периодическую функцию можно представить суммой отдельных гармонических составляющих (синусоид и косинусоид с различными амплитудами A, периодами Т и, следовательно, частотами щ).

Неоспоримым достоинством ПФ является его гибкость - преобразование может использоваться как для непрерывных функций времени, так и для дискретных.

ПФ часто применяется при решении задач, возникающих в теории автоматического регулирования и управления, в теории фильтрации и т.д. Разберем один из примеров. Имеется некий линейный фильтр - изготовленный то ли в виде набора спаянных между собой резисторов, конденсаторов и катушек индуктивности, то ли в виде модульной конструкции интегральных микросхем. Известен также входной сигнал (на рис. 1 в качестве входного сигнала изображена дельта-функция, то есть импульс исчезающе короткой длительности и бесконечно большой амплитуды). Необходимо определить, какой сигнал появится на выходе нашего фильтра.

Рисунок 1 - Исследование линейного фильтра

Ход решения этой задачи зависит от того, какую позицию мы предпочтем. Выберем временной путь решения (верхняя половина рис. 2) - придется входной сигнал записать как функцию времени SBX(t) и использовать импульсную характеристику фильтра h(t), то есть математическую запись его работы во времени. Отправимся по частотному пути (нижняя половина рис. 2) - нужно будет оперировать уже не с самим входным сигналом, а с его спектром gbx(щ). Да и алгоритм работы нашего фильтра потребуется представить в частотной области - в виде частотной характеристики K(щ). Для этого воспользуемся помощью «магического стекла» ПФ.

Рисунок 2 - Быстрое преобразование Фурье

Итак, два пути - какой из них избрать? По-видимому, тот, который проще. Во всяком случае, в большинстве практических задач предпочтение отдается частотному направлению.

Если выполнять ДПФ входной последовательности, впрямую - строго по исходной формуле, то потребуется много времени (особенно если количество входных отсчетов велико). Конструктивнее использовать принцип «разделяй и властвуй», лежащий в основе алгоритма БПФ. Согласно ему входная последовательность делится на группы (например, четные и нечетные отсчеты), и для каждой из них выполняется ДПФ, а затем полученные результаты объединяются. В итоге получается ДПФ входной последовательности - и существенная экономия времени. Поэтому описанный алгоритм так и назвали - быстрое преобразование Фурье.

В данном реферате рассмотрим более подробно быстрое преобразование Фурье.

Yandex.RTB R-A-252273-3