Алгоритм фильтрации, пример на основе БПФ

реферат

ЗАКЛЮЧЕНИЕ

До середины 1960-х для представления спектрального разложения использовались точные формулы для нахождения параметров синусов и косинусов. Соответствующие вычисления требовали как минимум N**2 (комплексных) умножений. Таким образом, даже сегодня высокоскоростному компьютеру потребовалось бы очень много времени для анализа даже небольшого временного ряда (для 8,000 наблюдений потребовалось бы, по меньшей мере 64 миллиона умножений).

Ситуация кардинально изменилась с открытием так называемого алгоритма быстрого преобразования Фурье, или БПФ для краткости. Достаточно сказать, что при применении алгоритма БПФ время выполнения спектрального анализа ряда длины N стало пропорционально N*log2(N) что конечно является огромным прогрессом.

Однако недостаток стандартного алгоритма БПФ состоит в том, что число данных ряда должно быть равным степени 2 (т.е. 16, 64, 128, 256,...). Обычно это приводит к необходимости добавлять нули во временной ряд, который, как описано выше, в большинстве случаев не меняет характерные пики периодограммы или оценки спектральной плотности. Тем не менее, в некоторых случаях, когда единица времени значительна, добавление констант во временной ряд может сделать результаты более громоздкими.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Цифровая обработка сигналов: Учебн. Пособие для вузов/Л. М. Гольденберг, Б.Д. Матюшкин, М. Н. Поляк. - 2изд., перераб. и доп. - М.: Радио и связь, 1990. - 256 с.: ил.

2. Рабинер Л., Гоулд Б. Теория и применения цифровой обработки сигналов. - М.:Мир, 1978.-848с.

3. Макклеплан Д.Х., Рейдер Ч. М. Применение теории чисел в цифровой обработке сигналов: Пер. с англ. - М.: Радио и связь, 1983.-264с.

4. Гольденберг Л.М., Матюшкин Б.Д., Поляк М. Н. Цифровая обработка сигналов: Справочник.- М.: Радио и связь, 1985. - 312с., ил.

Делись добром ;)