1.2. Основные понятия аналитической геометрии.
Аналитическая геометрия не имеет строго определенного содержания и определяющим для нее является не предмет исследования, а метод. То есть аналитическая геометрия имеет своей задачей изучение свойств геометрических объектов при помощи аналитического метода.
В основе этого метода лежит так называемый метод координат, впервые систематически примененный Декартом.
Основные понятия геометрии (точки, прямые линии и плоскости) относятся к числу так называемых начальных понятий. Эти понятия можно описать, но всякая попытка дать определение каждого из этих понятий неизбежно сведется к замене определяемого понятия ему эквивалентным. С научной точки зрения логически безупречным методом введения указанных понятий является аксиоматический метод, в развитии и завершении которого величайшая заслуга принадлежит Гильберту.
Аксиоматический метод закладывает фундамент и для лежащего в основе аналитической геометрии метода координат. Ради простоты рассмотрим вопрос о введении координат на прямой. Возможность введения координат на прямой основывается на возможности установления взаимно однозначного соответствия между множеством всех точек прямой и множеством всех вещественных чисел.
Доказательство возможности установления такого соответствия базируется на аксиомах геометрии и на аксиомах (свойствах) множества вещественных чисел.
Метод координат представляет собой глубокий и мощный аппарат, позволяющий привлекать для исследования геометрических объектов. Благодаря универсальности подхода к решению различных задач, метод аналитической геометрии стал основным методом геометрических исследований и широко применяется в других областях точного естествознания - механике, физике.
Аналитическая геометрия объединила геометрию с алгеброй и анализом, что плодотворно сказалось на развитии этих трех разделов математики.
- 2) Методы решения задач аналитической геометрии
- 2. Теоретическая часть: Методы решения стереометрических задач.
- Тема: Методы решения планиметрических задач.
- Аналитические методы решения оптимизационных задач
- Тема 1. Векторный метод решения планиметрических задач
- Выбор метода решения задачи
- Тема 2. Математическое моделирование полевых задач и аналитические методы их решения
- 3.2.8. Оптимизационные методы решения задач аналитического
- 3.2.9. Методы решения задач аналитического проектирования