4. Визначення члена цифр періоду при перетворенні звичайного дробу в десятковий
З елементарної арифметики відомо, що звичайний нескоротний дріб у перетворюється в скінченний десятковий дріб тоді і тільки тоді, коли канонічний розклад знаменника не містить простих множників відмінних від 2 і 5.
Нехай нескоротний дріб і канонічний розклад знаменника містить прості числа, відмінні від 2 і 5; перетворюватимемо такий дріб у десятковий.
Нескінченний десятковий дріб, десяткові знаки якого періодично повторюються, називається періодичним, десятковим дробом. Якщо десяткові знаки повторюються, починаючи з першого, то десятковий дріб називається чистим періодичним, у противному разі він називається мішаним періодичним дробом.
Теорема 1. Якщо нескоротний дріб і (,
10) = 1, то цей дріб перетворюється у чистий періодичний десятковий дріб; число цифр у періоді дробу дорівнює , де - показник, до - якого належить число 10 за модулем .
Доведення. Справді, не порушуючи загальності міркувань, можна нескоротний дріб вважати правильним (якщо він неправильний, тобто
, то. ми спочатку виділимо цілу частину); отже, можна вважати рівним одному з чисел, менших і взаємно простих з .
Перетворюватимемо дріб у десятковий за загальними правилами:
для цього поділимо спочатку 10 на позначаючи через частку і через - остачу від цього ділення, отримаємо:
Тепер поділимо на :
;
далі ділимо на :
і т.д. Такий процес нескінченний, бо щоразу будуть остачі, менші від і взаємно прості з . Справді, , за умовою, тому і ; аналогічно , а тому і т.д.
Звідси випливає, що різних остач при зазначеному діленні буде не більш, як . Це означає, що не пізніш як через кроків ми дістанемо повторення остач, а отже, й повторення цифр частки.
Для доведення теореми залишається показати, що перше повторення настане після ділень, де - показник, до якого належить 10 за модулем причому перша остача, яка повторюється, саме и буде . Тому знайдений дріб буде чистим періодичним з числом цифр у періоді, яке дорівнює .
Але для доведення цих тверджень досить встановити, що коли - найменший показник, для якого
, (1)
то при діленні на будь-якого числа і взаємно простого з остача повториться тільки після визначення цифр частки.
Справді, конгруенція (1) еквівалентна конгруенції:
. (2)
Ця конгруенція саме й показує, що приписавши до числа нулів, що відповідає визначенню послідовних цифр частки, дістанемо при діленні на остачу . Через те що -найменше невідємне число, для якого мають місце конгруенції (1) і (2), то жодна остача не може повторитись раніш як через ділень. Зокрема, при діленні на перша остача, що повторюється, саме й буде причому вона повториться точно через ділень. Цим теорему доведено.
Бачимо, залежить тільки від знаменника нашого дробу і, звичайно, від основи нашої системи числення, тобто від числа g = 10. Тому два дроби і , які задовольняють умову теореми 1, матимуть одну й ту саму довжину періоду при перетворенні їх у десяткові дроби.
Приклад. Знайти довжину періоду, який утворюється при перетворенні дробів , де - будь-яке ціле, взаємно-просте з 21 у десяткові. Тут ; ділимо:
У частці маємо 6 цифр, беручи до уваги й 0, який відповідає першій дев?ятці. Отже, , тобто шуканий період складається з 6 цифр.
Теорема 2. Якщо нескоротний дріб і , де , то цей дріб перетворюється у мішаний періодичний десятковий дріб; число цифр у періоді дробу дорівнює де - показник, якому належить 10 за модулем ; число цифр до періоду дорівнює де - найбільше з чисел або .
Доведення. Справді, нехай дріб - нескоротний, причому
,
Помножимо на ; після скорочення в знаменнику множників 2 і 5 отримаємо:
,
де дріб - нескоротний і . За теоремою 1, цей дріб перетворюється у чистий періодичний з числом цифр у періоді, яке дорівнює , де - показник, до якого належить 10 за модулем . Щоб з нього дістати дріб , треба поділити на , тобто перенести кому в знайденому періодичному дробі на знаків ліворуч. У результаті отримаємо мішаний періодичний дріб з числом цифр до періоду, що дорівнює . Цим теорему доведено.
Приклад. ; маємо . Знайдемо , тобто показник, до якого належить 10 за модулем 7. Маємо:
.
Отже, ( можна знайти згідно з зауваженням зробленим вище). Таким способом усі дроби виду , де , перетворюються в мішані періодичні дроби з числом цифр у періоді, яке дорівнює 6, і з числом цифр до періоду яке дорівнює 2. Так наприклад, безпосередньо переконуємось, що
.
Розглянемо обернену задачу: знайти звичайний дріб, який відповідає заданому періодичному дробу.
Нехай дано чистий періодичний дріб: де - ціла частина, тобто
,
або
;
але
,
де число зображається девятками. Отже отримаємо:
,
тобто для того, щоб перетворити чистий періодичний дріб у звичайний, треба період дробу зробити чисельником, а в знаменнику написати стільки девяток, скільки цифр у періоді, і знайдений дріб додати до цілої частини. Нехай тепер дано мішаний періодичний дріб:
Його можна подати так:
Звідси виводимо таке правило: щоб перетворити мішаний періодичний дріб у звичайний, треба від числа, що стоїть між комою і другим періодом (тобто від числа ), відняти число, яке стоїть між комою і першим періодом (тобто число ), і цю різницю зробити чисельником; у знаменнику треба написати стільки девяток, скільки цифр у періоді, й після них - стільки нулів, скільки цифр між комою й першим періодом, і цей дріб додати до цілої частини N.
Зауваження. Можна відразу перетворити періодичний дріб у звичайний неправильний дріб (не виділяючи цілої частини). Для цього треба цифри цілої частини вважати цифрами, що стоять до періоду, й застосувати правило для перетворення мішаного періодичного дробу в звичайний. При такій побудові знаменника цифри цілої частини враховувати не слід.
Приклад.
, або .
- 2. Програма державного екзамену Основні структури сучасної математики
- 4.2. Рекомендації до опрацьовування тем 4-7 розділу 2 Теоретико-числові обчислювальні алгоритми
- Лекція № 5 Тема: Розв’язування алгебраїчних конгруенцій
- Способи розв’язування конгруенцій 1-го степеня
- §7 Деякі арифметичні застосування теорії конгруенцій
- Застосування теорії графів