2. Свойства централизаторов конгруэнции универсальных алгебр
Напомним, что класс алгебр сигнатуры называется многообразием, если существует множество тождеств сигнатуры такое, что алгебра сигнатуры принадлежит классу тогда и только тогда, когда в ней выполняются все тождества из множества .
Многообразие называется мальцевским, если оно состоит из алгебр, в которых все конгруэнции перестановочны.
Все алгебры считаются принадлежащими некоторому фиксированному мальцевcкому многообразию. Используются стандартные обозначения и определения из[2].
В данной работе конгруэнции произвольной алгебры будем обозначать греческими буквами.
Если - конгруэнция на алгебре , то
смежный класс алгебры по конгруэнции . или - диагональ алгебры .
Для произвольных конгруэнции и на алгебре будем обозначать множество всех конгруэнции на алгебре таких, что
тогда и только тогда, когда
Так как , то множество не пусто.
Следующее определение дается в работе[2].
Определение 2.1. Пусть и - конгруэнции на алгебре . Тогда централизует (записывается: ), если на существует такая конгруэнция , что:
1) из
всегда следует
2) для любого элемента
всегда выполняется
3) если
то
Под термином «алгебра» в дальнейшем будем понимать универсальную алгебру. Все рассматриваемые алгебры предполагаются входящими в фиксированное мальцевское многообразие .
Следующие свойства централизуемости, полученные Смитом[3], сформулируем в виде леммы.
Лемма 2.1. Пусть . Тогда:
1) существует единственная конгруэнция , удовлетворяющая определению 2.1;
2) ;
3) если
то
Из леммы 2.1. и леммы Цорна следует, что для произвольной конгруэнции на алгебре всегда существует наибольшая конгруэнция, централизующая . Она называется централизатором конгруэнции в и обозначается .
В частности, если , то централизатор в будем обозначать .
Лемма 2.2. Пусть , - конгруэнции на алгебре , , , . Тогда справедливы следующие утверждения:
1) ;
2) , где ;
3) если выполняется одно из следующих отношений:
4) из всегда следует
Доказательство:
1) Очевидно, что - конгруэнция на , удовлетворяющая определению 2.1. В силу пункта 1) леммы 2.1. и .
2) - конгруэнция на , удовлетворяющая определению 2.1. Значит
3) Пусть . Тогда
Применим к последним трем соотношениям мальцевский оператор такой, что
Тогда получим
т.е.
Аналогичным образом показываются остальные случаи из пункта 3).
4) Пусть
Тогда справедливы следующие соотношения:
Следовательно,
где - мальцевский оператор.
Тогда
то есть .
Так как
то .
Таким образом . Лемма доказана.
Следующий результат оказывается полезным при доказательстве последующих результатов.
Лемма. 2.3. Любая подалгебра алгебры , содержащая диагональ , является конгруэнцией на алгебре .
Доказательство:
Пусть
Тогда из
следует, что
Аналогичным образом из
получаем, что
Итак, симметрично и транзитивно. Лемма доказана.
Доказательство следующего результата работы [1] содержит пробел, поэтому докажем его.
Лемма 2.4. Пусть . Тогда для любой конгруэнции на алгебре .
Доказательство:
Обозначим и определим на алгебре бинарное отношение следующим образом:
тогда и только тогда, когда
где
Используя лемму 2.3, нетрудно показать, что - конгруэнция на алгебре , причем
Пусть
то есть
Тогда
и, значит
Пусть, наконец, имеет место
Тогда справедливы следующие соотношения:
применяя мальцевчкий оператор к этим трем соотношениям, получаем
Из леммы 2.2 следует, что
Так как
то
Значит,
Но , следовательно, .
Итак,
и удовлетворяет определению 2.1. Лемма доказана.
Лемма 2.5. Пусть , - конгруэнции на алгебре , и - изоморфизм, определенный на .
Тогда для любого элемента отображение определяет изоморфизм алгебры на алгебру , при котором .
В частности, .
Доказательство.
Очевидно, что - изоморфизм алгебры на алгебру , при котором конгруэнции , изоморфны соответственно конгруэнциям и .
Так как
то определена конгруэнция
удовлетворяющая определению 2.1.
Изоморфизм алгебры на алгебру индуцирует в свою очередь изоморфизм алгебры на алгебру такой, что
для любых элементов и , принадлежащих . Но тогда легко проверить, что - конгруэнция на алгебре , изоморфная конгруэнции .
Это и означает, что
Лемма доказана.
Определение 2.2. Если и - факторы на алгебре такие, что
то конгруэнцию обозначим через и назовем централизатором фактора в .
Напомним, что факторы и назыавются перспективными, если либо
либо
Докажем основные свойства централизаторов конгруэнции.
Теорема 6 Пусть , , , - конгруэнции на алгебре . Тогда:
1) если , то
2) если , то
3) если , и факторы , перспективны, то
4) если - конгруэнции на и , то
где , .
Доказательство.
1) Так как конгруэнция централизует любую конгруэнцию и , то
2) Из первого пункта лемы 2.2 следует, что
а в силу леммы 2.4 получаем, что
Пусть - изоморфизм . Обозначим
По лемме 2.5 , а по определению
Следовательно,
3) Очевидно, достаточно показать, что для любых двух конгруэнции и на алгебре имеет место равенство
Покажем вналале, что
Обозначим . Тогда, согласно определению 2.1. на алгебре существует такая конгруэнция , что выполняются следующие свойства:
а) если , то
б) для любого элемента ,
в) если
то
Построим бинарное отношение на алгебре следующим образом:
тогда и только тогда, когда
и
Покажем, что - конгруэнция на . Пусть
для . Тогда
и
Так как - конгруэнция, то для любой -арной операции имеем
Очевидно, что
и
Следовательно,
Очевидно, что для любой пары
Значит,
Итак, по лемме 2.3, - конгруэнция на . Покажем теперь, что удовлетворяет определению 2.1, то есть централизует . Пусть
Тогда
Так как , и , то . Следовательно, удовлетворяет определению 2.1.
Если , то
значит,
Пусть, наконец, имеет место (1) и
Тогда
Так как и , то , следовательно, . Из (2) следует, что , а по условию . Значит, и поэтому
Тем самым показано, что конгруэнция удовлетворяет определению 2.1, то есть централизует .
Докажем обратное включение. Пусть
Тогда на алгебре определена конгруэнция
удовлетворяющая определению 2.1. Построим бинарное отношение на алгебре следующим образом:
тогда и только тогда, когда
и , .
Аналогично, как и выше, нетрудно показать, что - конгруэнция на алгебре . Заметим, что из доказанного включения в одну сторону следует, что . Покажем поэтому, что централизует .
Так как
то
то есть удовлетворяет условию 1) определения 2.1.
Если , то
следовательно,
Пусть имеет место (3) и .
Так как
то
Из (4) следует, что , следовательно,
то есть
На основании леммы 2.2 заключаем, что
Следовательно, .
А так как , то , то есть
4) Обозначим . Пусть
и удовлоетворяет определению 2.1.
Определим бинарное отношение на следующим образом
тогда и только тогда, когда
Аналогично, как и выше, нетрудно показать, что - конгруэнция, удовлетворяющая определению 2.1.
Это и означает, что
Теорема доказана.
Как следствия, из доказанной теоремы получаем аналогичные свойства централизаторов в группах и мультикольцах.
- 2.4. Алгебры
- 2.3. Алгебра множеств (алгебра Кантора)
- 6. Алгебра Кантора. Законы алгебры Кантора
- 2.1. Фундаментальные алгебры
- Алгебра множеств (алгебра Кантора)
- Понятие алгебры
- Алгебры с одной бинарной алгебраической операцией
- Понятие алгебры. Алгебра множеств
- § 3. Понятие алгебры. Алгебра множеств кантора
- 23. Решетка как универсальная алгебра.