Применение неравенств при решении олимпиадных задач
3.1 Теоретические сведения
Неравенство Йенсена
Теорема (неравенство Йенсена):
Пусть - функция, выпуклая на некотором интервале, x1, x 2, …, x n - произвольные числа из этого интервала, а ?1, ?2, …, ?n - произвольные положительные числа, сумма которых равна единице. Тогда:
. (1)
Доказательство:
Рассмотрим на графике функции точки А1, А2, …, Аn с абсциссами х1, x2, …, xn. Расположим в этих точках грузы с массами, m2, …, mn. Центр масс этих точек имеет координаты
.
Так как точки А1, А2, …, Аn принадлежат надграфику выпуклой функции, то и их центр масс также принадлежит надграфику (ибо надграфик - выпуклая фигура). А это означает, что ордината центра масс М не меньше ординаты точки на графике с той же абсциссой (рис. 1), т.е.
. (2)
рис. 1
Для завершения доказательства остаётся положить m1= ?1, …, mn= ?n.
Однако есть два важных замечания. Во-первых, в процессе доказательства неравенства Йенсена (1) мы доказали неравенство (2). На самом деле эти неравенства равносильны. Положив в неравенстве (1) (i=1, 2, ..., n), мы получаем неравенство (2). Поэтому естественно эти два неравенства называются неравенствами Йенсена. Неравенство (1) выглядит более компактно, однако для приложений удобней пользоваться неравенством (2). Во-вторых, если функция вогнутая, то для неё неравенства Йенсена (1) и (2) меняются на противоположные. Чтобы доказать это, достаточно рассмотреть выпуклую функцию .
Неравенство Коши-Буняковского
На первый взгляд, неравенство Йенсена не производит особого впечатления: слишком общо выглядит формулировка. Однако дальше можно убедиться, что это впечатление обманчиво.
Продемонстрировать силу неравенства Йенсена можно на конкретном примере. А именно, доказать знаменитое неравенство Коши-Буняковского , где a1, a2, …, an, b1, b2, …, bn - произвольные положительные числа.
Доказательство:
Как мы знаем, функция - выпуклая. Напишем для этой функции неравенство Йенсена (2):
, (mi > 0).
Следовательно, . Положив , получим требуемое неравенство.
Неравенство Коши
При решении многих задач часто используется классическое неравенство Коши о среднем арифметическом и среднем геометрическим неотрицательных чисел.
Пусть x1, x 2, …, x n - неотрицательные числа. Средним арифметическим этих чисел называется число -
.
Средним геометрическим чисел x1, x 2, …, x n называется число -
.
Теорема 1. Если x1, x 2, …, x n - неотрицательные числа, то имеет место неравенство
. (1)
Причём знак равенства в нем достигается тогда и только тогда, когда все числа равны.
Соотношение (1) называется неравенством Коши. При n=2 неравенство Коши следует из очевидного неравенства
. Действительно, , откуда
. (2)
Отметим, что знак равенства в (2) имеет место тогда и только тогда, когда x1=x2.
Пусть x1, x 2, …, x n - положительные числа. Средним гармоническим (средним пропорциональным) этих чисел называется число -
.
Теорема 2. Если x1, x 2, …, x n - положительные числа, то имеют место неравенства
An ? Gn ? Hn.
Действительно, применяя к числам неравенство Коши, получаем
, (3)
откуда Gn ? Hn.
Пусть x1, x 2, …, x n - произвольные числа. Средним квадратическим этих чисел называется число -
.
Теорема 3. Если x1, x 2, …, x n - положительные числа, то имеют место неравенства
Kn ? An ? Gn ? Hn , или
. (4)
Причём знак равенства в (4) достигается тогда и только тогда, когда все числа равны.
Для двух чисел неравенство (4) можно записать как
,
которое очень легко доказать с помощью простых преобразований. А именно,
аналогично доказывается и для n чисел, откуда Kn ? An.
Неравенство Бернулли
Ещё один способ решения некоторых олимпиадных задач - это использование неравенства Бернулли, которое иногда может значительно облегчить задачу. «Классическое» неравенство Бернулли формируется следующим образом:
Теорема. Для x > -1 и произвольного натурального n имеет место
(1)
причем равенство в (1) достигается при x=0, n=0 или n=1.
Однако кроме (1) существует и более общее неравенство Бернулли, которое содержит в себе два неравенства:
если n<0 или n>1, то
, (2)
если 0<n<1, то
, (3)
где x > -1.
Следует отметить, что равенства (2) и (3) имеют место лишь при x=0.
Доказательство(I способ):
, где xi - числа одного и того же знака и .
Применяем метод математической индукции.
Проверяем неравенство для n=1: . Неравенство верно.
Пусть неравенство верно для n членов, т.е. верно неравенство
.
Умножим его на неотрицательное число 1+xn+1 (оно неотрицательно, т.к. ). Получим:
.
Т.к. xi одного знака, произведения в правой части положительны, и если их отбросить, неравенство только усилится. Получаем:
.
Как мы видим, неравенство верно и для n+1 членов, а значит верно для любых n.
Доказательство(II способ):
Также применяем метод математической индукции.
При n=1 имеем , . Утверждаем, что при n=k неравенство верно: . Тогда при n=k+1 имеем
.
Неравенство доказано.
Весовое (общее) неравенство Коши
Ранее мы рассмотрели так называемое классическое неравенство Коши. Однако очень большое значение имеет также одно важное обобщение неравенства Коши - это общее, или весовое, неравенство Коши.
Теорема. Для любых действительных положительных чисел m1, m2, …, mn и для любых неотрицательных x1, x2, …, xn имеет место неравенство
. (1)
Числа m1, m2, …, mn называются весовыми коэффициентами.
Неравенство (1) выполняется и для неотрицательных весовых коэффициентов m1, m2, …, mn, но в этом случае необходимо требовать, чтобы знаменатель левой части (1) не превращался в ноль и выражения имели смысл (т.е. не все m1, m2, …, mn равны нулю и числа xi и mi одновременно не равнялись нулю).
Понятно, что при m1= m2= …= mn, весовое неравенство Коши превращается в обыкновенное неравенство Коши.
Выражение, которое стоит в левой части (1), называется весовым средним арифметическим, а то, которое в правой - весовым средним геометрическим.
Неравенство (1), для натуральных m1, m2, …, mn, непосредственно следует из обыкновенного неравенства Коши:
. (2)
Неравенство (1) с неотрицательными рациональными весовыми коэффициентами легко привести к случаю, когда .