Пример 1.8.
Преобразовать дробь (0,1011)2 в десятичную систему счисления.
Метод умножения преобразования дробей используется при переходе из “родной” в “чужую” систему счисления, а метод деления – из “чужой” в “родную”.
1.2.3. Перевод чисел с основанием q=pk.
Наиболее прост перевод чисел из q-ичной системы в p-ичную (или обратно), если имеет место соотношение q=pk (k- целое положительное) и обе системы имеют неотрицательные базы.
В этом случае перевод из q–ичной системы счисления в p–ичную производят “поразрядно”, заменяя каждую q–ичную цифру равной ей k–разрядным числом, записанным в p–ичной системе счисления. Перевод из p–ичной системы в q–ичную производят при этом следующим образом. Двигая от запятой вправо и влево, разбивают p–ичную запись числа на группы по k цифр. Если при этом самая левая или самая правая группы окажутся неполными, к ним приписывают соответственно слева и справа столько нулей, чтобы каждая из них содержала k цифр. После этого каждую группу p–ичных цифр заменяют одной q–ичной цифрой, равной числу, обозначенному этой группой p–ичных цифр. Большой практический интерес представляет случай, когда p=2 (двоичное основание).
В этом случае имеем частный случай двоично-кодированной системы счисления, при которых двоичное число и двоично-кодированное число совпадают. Этот факт используют для более короткой записи двоичных чисел. Обычно берут p=23=8 (восьмеричная система счисления) и p=24=16 (шестнадцатеричная система счисления).
- 0.1. Понятие организации эвм.
- Функция, структура и организация систем.
- Основные факторы, влияющие на принципы построения эвм.
- 0.2. Содержание курса.
- 1. Представление информации в эвм.
- 1.1. Системы счисления.
- 1.1.1. Позиционные системы счисления.
- Пример 1.1.
- 1.1.2. Двоично-кодированные системы счисления.
- Пример 1.2.
- 1.2. Преобразование из одной системы счисления в другую.
- 1.2.1. Преобразование целых чисел. Метод деления.
- Пример 1.7.
- Метод деления.
- Пример 1.8.
- Пример 1.9.
- 1.3. Представление информации в эвм.
- 1.3.1. Двоичные числа.
- 1.3.2. Кодирование десятичных чисел и алфавитно-цифровой информации.
- Пример 1.10.
- Пример 1.11.
- 1.3.3. Логические значения.
- 1.4. Машинные коды.
- 1.4.1. Прямой код.
- Пример 1.12.
- 1.4.2. Дополнительный код.
- Пример 1.13.
- 1.4.3. Обратный код числа.
- Пример 1.14.
- 1.4.4. Выполнение арифметических действий с кодами.
- Пример 1.15.
- 1.4.5. Признаки переполнения разрядной сетки.
- Пример 1.16.
- Пример 1.17.
- 2. Синтез комбинационных устройств.
- 2.1 Логические переменные и функции.
- Физическая природа.
- Пример 2.1.
- 2.2 Элементарные функции.
- 2.2.1 Функции одной переменной.
- Элемент повторения.
- Элемент «не».
- 2.2.2 Функции двух переменных.
- 2.3 Функции многих переменных.
- Примеры (2.2.) базисов:
- Основные законы Булевского базиса:
- Действия с константами «0» и «1»:
- Правило введения и исключения лишних связок:
- 2.4. Задание функции комбинационных логических схем.
- Пример 2.5.
- Пример 2.6.
- 2.6. Минимизация нормальных форм булевых функций.
- 2.7 Минимизация с помощью диаграмм Карно.
- 2.8 Топологическая интерпретация правил минимизации.
- Правила минимизации:
- 2) Коэффициент объединения по входу.
- 3) Быстродействие.
- Пример 2.10.
- 2.9.1 Порядок синтеза комбинационных схем.
- 2.9.2 Элементы «и», «или», «не».
- 2.9.3 Элементы «и-не», «или-не».
- Пример 2.14.
- 2.10. Цифровые устройства на программируемых бис с матричной структурой.
- 2.10.1. Матричная реализация булевых функций.
- 2.10.2. Программируемые логические матрицы (плм).
- 2.10.3. Другие структуры матричных бис.
- Постоянные запоминающие устройства (пзу).
- Пример 2.15.
- Программируемая матрица вентилей (пмв).
- Программируемые матрицы логики (пмл).
- 3. Построение цифровых устройств автоматного типа.
- 3.1. Понятие автомата.
- 3.2. Синтез абстрактных автоматов.
- 3.2.1. Определение абстрактного автомата.
- 3.2.2. Методы задания автоматов.
- Задание автомата в виде графа переходов и выходов.
- Пример 3.1.
- Задание автомата в виде таблиц переходов и выходов.
- Задание автомата в виде матриц переходов и выходов.
- Табличная форма представления матриц переходов и выходов.
- 3.2.3. Минимизация числа внутренних состояний абстрактных автоматов.
- 3.3. Структурный синтез конечных автоматов.
- 3.3.1 Этапы структурного синтеза автоматов.
- 3.3.2. Кодирование символов алфавитов абстрактных автоматов.
- С труктурная схема автомата.
- Проблемы возникающие при кодировании.
- Пример 3.2.
- 3.3.3. Получение кодированной таблицы переходов и выходов.
- Пример 3.3.:
- 3.3.4. Определение функций внешних переходов.
- 3.3.5 Элементарные автоматы и их свойства.
- 3.3.6 Определение функций возбуждения элементарных автоматов.
- Литература: