logo
Лекции по микропроцессорам Щеглов

2.10.1. Матричная реализация булевых функций.

В качестве функциональных узлов БИС, ориентированных на реализацию логических функций, широко используются так называемые матричные схемы. Они представляют собой ортогональную решётку, в узлах которой включены элементы с односторонней проводимостью (ЭОП). В качестве таких элементов используются диоды, биполярные и МОП транзисторы и т.д.

Р ассмотрим матрицу М1 (Рис. 2.24.), в которой ЭОП является диод:

Такая матрица по каждому из своих выходов р12345 реализует конъюнкцию входных переменных х1234:

Рассмотрим матрицу М2 (Рис. 2.25.), в которой ЭОП является биполярным транзистором.

Такая матрица по каждому из своих выходов у1, у2, у3 реализует функции «ИЛИ» входных переменных p1, р2, р3, р4, p5.

С оединяя матрицы М1 и М2 так, как показано на рис. 2.26. можно реализовать на выходах у1, у2, у3 полученной структуры следующие ДНФ входных переменных х1, х2, х3, х4:

П остроение схем с матричной структурой сводится к определению точек пересечения шин, где должны быть включены ЭОП, и настройке (программированию) матриц - установке ЭОП в найденных точках.

По способу настройки (программированию) различают матрицы настраиваемые (программируемые) 1) на заводе изготовителе, 2) пользователем и 3) репрограммируемые (многократно настраиваемые).

Матрица первого типа называется масочными (М-типа), второго типа – программируемыми (П-типа) и третьего типа – репрограммируемыми (Р-типа).

В М-матрицах соединение ЭОП с шинами осуществляется на заводе изготовителе один раз с помощью специальных масок, используемых для металлизации определённых участков БИС. После изготовления БИС полученные соединения не могут быть изменены. БИС М–типа дороги, так как стоимость масок - шаблонов очень высока.

П -матрицы поставляются потребителю не настроенными и содержащими ЭОП в каждой точке пересечения их шин. Настройка сводится к удалению (отключению) некоторых ненужных ЭОП. Физически процесс настройки осуществляется различными способами, например, путём пропускания серии импульсов тока большой амплитуды через соответствующий ЭОП и разрушения плавкой перемычки, включённой последовательно к этим ЭОП. Таким образом, П–матрицы программируются однократно потребителем.

Р-матрицы позволяют осуществлять программирование многократно. Повторное программирование выполняется электрическим способом для каждого ЭОП после стирания всего содержимого матриц под действием ультрафиолетового (рентгеновского) облучения или электрическим способом.

Сложность реализации булевых функций принято оценивать суммарной информационной ёмкостью (площадью) матриц S(M):

S(M)=S(M1)+S(M2)=2*s*q+q*t, где s – число входов матрицы М1, q – число выходов матрицы М1 (число вертикалей, промежуточных шин), t – число выходов матрицы М2 и структуры в целом.

Для лучшего использования ёмкости при реализации булевых функций необходимо представлять их в минимальной ДНФ. Для нашего случая информационная ёмкость равна: S(M)=2*4*5+5*3=55.