2.10.1. Матричная реализация булевых функций.
В качестве функциональных узлов БИС, ориентированных на реализацию логических функций, широко используются так называемые матричные схемы. Они представляют собой ортогональную решётку, в узлах которой включены элементы с односторонней проводимостью (ЭОП). В качестве таких элементов используются диоды, биполярные и МОП транзисторы и т.д.
Р ассмотрим матрицу М1 (Рис. 2.24.), в которой ЭОП является диод:
Такая матрица по каждому из своих выходов р1,р2,р3,р4,р5 реализует конъюнкцию входных переменных х1,х2,х3,х4:
Рассмотрим матрицу М2 (Рис. 2.25.), в которой ЭОП является биполярным транзистором.
Такая матрица по каждому из своих выходов у1, у2, у3 реализует функции «ИЛИ» входных переменных p1, р2, р3, р4, p5.
С оединяя матрицы М1 и М2 так, как показано на рис. 2.26. можно реализовать на выходах у1, у2, у3 полученной структуры следующие ДНФ входных переменных х1, х2, х3, х4:
П остроение схем с матричной структурой сводится к определению точек пересечения шин, где должны быть включены ЭОП, и настройке (программированию) матриц - установке ЭОП в найденных точках.
По способу настройки (программированию) различают матрицы настраиваемые (программируемые) 1) на заводе изготовителе, 2) пользователем и 3) репрограммируемые (многократно настраиваемые).
Матрица первого типа называется масочными (М-типа), второго типа – программируемыми (П-типа) и третьего типа – репрограммируемыми (Р-типа).
В М-матрицах соединение ЭОП с шинами осуществляется на заводе изготовителе один раз с помощью специальных масок, используемых для металлизации определённых участков БИС. После изготовления БИС полученные соединения не могут быть изменены. БИС М–типа дороги, так как стоимость масок - шаблонов очень высока.
П -матрицы поставляются потребителю не настроенными и содержащими ЭОП в каждой точке пересечения их шин. Настройка сводится к удалению (отключению) некоторых ненужных ЭОП. Физически процесс настройки осуществляется различными способами, например, путём пропускания серии импульсов тока большой амплитуды через соответствующий ЭОП и разрушения плавкой перемычки, включённой последовательно к этим ЭОП. Таким образом, П–матрицы программируются однократно потребителем.
Р-матрицы позволяют осуществлять программирование многократно. Повторное программирование выполняется электрическим способом для каждого ЭОП после стирания всего содержимого матриц под действием ультрафиолетового (рентгеновского) облучения или электрическим способом.
Сложность реализации булевых функций принято оценивать суммарной информационной ёмкостью (площадью) матриц S(M):
S(M)=S(M1)+S(M2)=2*s*q+q*t, где s – число входов матрицы М1, q – число выходов матрицы М1 (число вертикалей, промежуточных шин), t – число выходов матрицы М2 и структуры в целом.
Для лучшего использования ёмкости при реализации булевых функций необходимо представлять их в минимальной ДНФ. Для нашего случая информационная ёмкость равна: S(M)=2*4*5+5*3=55.
- 0.1. Понятие организации эвм.
- Функция, структура и организация систем.
- Основные факторы, влияющие на принципы построения эвм.
- 0.2. Содержание курса.
- 1. Представление информации в эвм.
- 1.1. Системы счисления.
- 1.1.1. Позиционные системы счисления.
- Пример 1.1.
- 1.1.2. Двоично-кодированные системы счисления.
- Пример 1.2.
- 1.2. Преобразование из одной системы счисления в другую.
- 1.2.1. Преобразование целых чисел. Метод деления.
- Пример 1.7.
- Метод деления.
- Пример 1.8.
- Пример 1.9.
- 1.3. Представление информации в эвм.
- 1.3.1. Двоичные числа.
- 1.3.2. Кодирование десятичных чисел и алфавитно-цифровой информации.
- Пример 1.10.
- Пример 1.11.
- 1.3.3. Логические значения.
- 1.4. Машинные коды.
- 1.4.1. Прямой код.
- Пример 1.12.
- 1.4.2. Дополнительный код.
- Пример 1.13.
- 1.4.3. Обратный код числа.
- Пример 1.14.
- 1.4.4. Выполнение арифметических действий с кодами.
- Пример 1.15.
- 1.4.5. Признаки переполнения разрядной сетки.
- Пример 1.16.
- Пример 1.17.
- 2. Синтез комбинационных устройств.
- 2.1 Логические переменные и функции.
- Физическая природа.
- Пример 2.1.
- 2.2 Элементарные функции.
- 2.2.1 Функции одной переменной.
- Элемент повторения.
- Элемент «не».
- 2.2.2 Функции двух переменных.
- 2.3 Функции многих переменных.
- Примеры (2.2.) базисов:
- Основные законы Булевского базиса:
- Действия с константами «0» и «1»:
- Правило введения и исключения лишних связок:
- 2.4. Задание функции комбинационных логических схем.
- Пример 2.5.
- Пример 2.6.
- 2.6. Минимизация нормальных форм булевых функций.
- 2.7 Минимизация с помощью диаграмм Карно.
- 2.8 Топологическая интерпретация правил минимизации.
- Правила минимизации:
- 2) Коэффициент объединения по входу.
- 3) Быстродействие.
- Пример 2.10.
- 2.9.1 Порядок синтеза комбинационных схем.
- 2.9.2 Элементы «и», «или», «не».
- 2.9.3 Элементы «и-не», «или-не».
- Пример 2.14.
- 2.10. Цифровые устройства на программируемых бис с матричной структурой.
- 2.10.1. Матричная реализация булевых функций.
- 2.10.2. Программируемые логические матрицы (плм).
- 2.10.3. Другие структуры матричных бис.
- Постоянные запоминающие устройства (пзу).
- Пример 2.15.
- Программируемая матрица вентилей (пмв).
- Программируемые матрицы логики (пмл).
- 3. Построение цифровых устройств автоматного типа.
- 3.1. Понятие автомата.
- 3.2. Синтез абстрактных автоматов.
- 3.2.1. Определение абстрактного автомата.
- 3.2.2. Методы задания автоматов.
- Задание автомата в виде графа переходов и выходов.
- Пример 3.1.
- Задание автомата в виде таблиц переходов и выходов.
- Задание автомата в виде матриц переходов и выходов.
- Табличная форма представления матриц переходов и выходов.
- 3.2.3. Минимизация числа внутренних состояний абстрактных автоматов.
- 3.3. Структурный синтез конечных автоматов.
- 3.3.1 Этапы структурного синтеза автоматов.
- 3.3.2. Кодирование символов алфавитов абстрактных автоматов.
- С труктурная схема автомата.
- Проблемы возникающие при кодировании.
- Пример 3.2.
- 3.3.3. Получение кодированной таблицы переходов и выходов.
- Пример 3.3.:
- 3.3.4. Определение функций внешних переходов.
- 3.3.5 Элементарные автоматы и их свойства.
- 3.3.6 Определение функций возбуждения элементарных автоматов.
- Литература: