Конструкция поля комплексных чисел.
Мы фактически уже построили поле комплексных чисел в предыдущем параграфе. В силу исключительной важности поля комплексных чисел приведем его непосредственную конструкцию. Рассмотрим пространство строк длины два над полем ℝ с операциями покомпонентного сложения и умножения на действительные числа. Определим умножение двух строк и так:
ТЕОРЕМА. Пространство строк длины два с определенным выше умножением есть поле комплексных чисел (обозначим его ℂ ). В нем единичным элементом будет строка (1,0), а множество (1,0)ℝ ={(x,0)} образует подполе поля ℂ, изоморфное полю действительных чисел (тем самым отображение x→ (x,0) (x∈ ℝ ) есть вложение ℝ в ℂ ). Строка (называемая далее комплексной единицей) будет корнем уравнения .
Доказательство. Сопоставим паре матрицу . Это отображение обозначим Φ и убедимся, что отображение Φ есть изоморфизм алгебраической системы ℂ на поле C. Это означает, что Φ – биективное отображение и
для любых комплексных чисел . Это значит, нам нет нужды проверять аксиомы поля для ℂ -- они автоматически выполнены в силу изоморфизма Φ.
Отображение x→ (x,0) есть гомоморфное вложение поля действительных чисел в ℂ и более того, имеет место равенство
для любых x,x',y'∈ ℝ . Теперь мы имеем возможность отождествить x и (x,0). Далее, равенство
показывает, что есть корень уравнения . Формула для обратного комплексного числа
В силу изоморфизма Φ и вычислений обратной матрицы к матрице получаем
Любой элемент поля комплексных чисел единственным образом записывается в виде z=x+iy, где x,y -- действительные числа. Число x называется действительной частью комплексного числа z и обозначается Re z, а y называется мнимой частью комплексного числа z и обозначается Im z. Комплексное число z полностью определяется своей действительной и мнимой частью, т.е.
К омплексные числа вида называем чисто мнимыми. Комплексные числа изображаются точками на плоскости или векторами с начальной точкой в начале координат (см. рис. 1). Горизонтальная ось называется действительной осью, а вертикальная ось Oy называется мнимой осью и обозначается как ибо по ней откладываются чисто мнимые числа и.т.д.. При этом сложение двух комплексных чисел можно рассматривать как сложение двух векторов по правилу параллелограмма. Геометрическая интерпретация умножения будет указана позже.
-
Содержание
- Спасское Городище 2012
- Введение
- Список обозначений и терминов
- Немного о бейсиКе
- Делимость целых чисел
- Алгоритм Евклида
- Матричная алгебра
- Определители
- Обратная матрица
- Компьютерная реализация матричной алгебры
- Линейные преобразования плоскости
- Комплексные числа
- Конструкция поля комплексных чисел.
- Сопряжение комплексных чисел
- Тригонометрическая форма записи комплексных чисел
- Комплексная экспонента
- Решение квадратных уравнений.
- Основная теорема алгебры комплексных чисел
- Алгебраические системы
- Операции и отношения на множестве
- Моноиды
- Поля и тела
- Подсистемы алгебраических систем
- Декартово произведение алгебраических систем
- Фактор системы
- Изоморфизм алгебраических систем
- Абелевы группы
- Группа подстановок
- Алгебра многочленов
- Немного комбинаторики
- Биномиальные коэффициенты
- Числа Фибоначчи
- Рациональные числа
- Дерево Штерна-Брокко
- Алгебра высказываний
- Дизъюнктивная совершенная нормальная форма.
- Конъюнктивная нормальная совершенная форма
- Многочлены Жегалкина
- Алгебра кватернионов.
- Литература