logo
Шпори ТІМС готові

33. . Закон великих чисел, центральна гранична теорема.

Нерівності Чебишова.

Перша форма: якщо випадкова величина Х невід’ємна і , то

Друга форма: якщо для випадкової величини існують моменти першого та другого порядку, то

Нехай задано послідовність випадкових величин:

Послідовність (1) задовольняє закон великих чисел, якщо

Окремі форми закону великих чисел різняться обмеженнями, які накладаються на випадкові величини, що входять у послідовність (1).

Теорема Хінчина. Якщо випадкові величини у послідовності незалежні, однаково розподілені і мають скінченне математичне сподівання то

Теорема Чебишова. Якщо випадкові величини у послідовності (1) незалежні, мають скінченні математичні сподівання і рівномірно обмежені дисперсії , то до послідовності (1) можна застосувати закон великих чисел.

Теорема Маркова. Нехай випадкові величини в послідовності (1) мають скінченні і як завгодно залежні математичні сподівання. Тоді, якщо при то для послідовності (1) можна застосувати закон великих чисел.

Теорема Бернуллі. Нехай проводиться n незалежних повторних випробувань, у кожному з яких імовірність настання події А дорівнює р. Тоді

де — частота події А у даних випробуваннях.

Центральна гранична теорема.

Для послідовності випадкових величин 1) розглянемо:

Теорема 1. Якщо випадкові величини в послідовності (1) незалежні, однаково розподілені і для них існують моменти другого порядку, то

(2)

тобто граничним розподілом для є нормальний закон розподілу з нульовим математичним сподіванням і одиничною дисперсією.

Теорема Ляпунова. Якщо для незалежних випадкових величин, які утворюють послідовність (1), існують моменти третього порядку і виконується умова

то для виконується співвідношен- ня (2).

Наслідком розглянутих теорем є інтегральна теорема Лапласа.

У схемі незалежних повторних випробувань

де Це випливає з того, що частоту події можна подати як суму n випадкових величин — частот настання події в окремих випробуваннях. При достатньо великих значеннях n закон розподілу цієї суми близький до нормального.

Аналогічними міркуваннями для цієї схеми легко дістати формулу:

де m — частота події А у n випробуваннях.

34)Нерівності Чебишова та її значення . Перша форма: якщо випадкова величина Х невід’ємна і , то

Зауваження : існує друга форм, якщо для випадкової величини існують моменти першого та другого порядку, то

Нехай задано послідовність випадкових величин:

(1)

Послідовність (1) задовольняє закон великих чисел, якщо

Окремі форми закону великих чисел різняться обмеженнями, які накладаються на випадкові величини, що входять у послідовність(1).