Задачи однофакторного дисперсионного анализа
Однофакторная дисперсионная модель имеет вид:
xij = μ + Fj + εij ,
где хij – значение исследуемой переменой, полученной на i-м уровне фактора (i=1,2,...,т) c j-м порядковым номером (j=1,2,...,n);
Fi – эффект, обусловленный влиянием i-го уровня фактора;
εij – случайная компонента, или возмущение, вызванное влиянием неконтролируемых факторов, т.е. вариацией переменой внутри отдельного уровня.
Основные предпосылки дисперсионного анализа:
- математическое ожидание возмущения εij равно нулю для любых i, т.е.
M(εij ) = 0; (2)
- возмущения εij взаимно независимы;
- дисперсия переменной xij (или возмущения εij ) постоянна для
любых i, j, т.е.
D(εij ) = σ2 ; (3)
- переменная xij (или возмущение εij ) имеет нормальный закон
распределения N(0;σ2 ).
Усреднение по какому-либо индексу обозначено звездочкой (или точкой) вместо индекса, тогда средний показатель качества изделий i-й партии, или групповая средняя для i-го уровня фактора, примет вид:
, (4)
где i * – среднее значение по столбцам;
ij – элемент матрицы наблюдений;
n – объем выборки.
А общая средняя:
. (5)
Сумма квадратов отклонений наблюдений хij от общей средней ** выглядит так:
2 =2 +2 +
+22 . (6)
или
Q = Q1 + Q2 + Q3 .
Последнее слагаемое равно нулю
=0. (7)
так как сумма отклонений значений переменной от ее средней равна нулю, т.е.
2 =0.
Первое слагаемое можно записать в виде:
В результате получается тождество:
Q = Q1 + Q2 , (8)
где - общая, или полная, сумма квадратов отклонений;
- сумма квадратов отклонений групповых средних от общей средней, или межгрупповая (факторная) сумма квадратов отклонений;
- сумма квадратов отклонений наблюдений от групповых средних, или внутригрупповая (остаточная) сумма квадратов отклонений.
В дисперсионном анализе анализируются не сами суммы квадратов отклонений, а так называемые средние квадраты, являющиеся несмещенными оценками соответствующих дисперсий, которые получаются делением сумм квадратов отклонений на соответствующее число степеней свободы.
Число степеней свободы определяется как общее число наблюдений минус число связывающих их уравнений. Поэтому для среднего квадрата s1 2 , являющегося несмещенной оценкой межгрупповой дисперсии, число степеней свободы k1 =m-1, так как при его расчете используются m групповых средних, связанных между собой одним уравнением. А для среднего квадрата s22, являющегося несмещенной оценкой внутригрупповой дисперсии, число степеней свободы k2=mn-m, т.к. при ее расчете используются все mn наблюдений, связанных между собой m уравнениями.
Таким образом:
= Q1/(m-1),
= Q2/(mn-m).
В приложении 1 представлен общий вид вычисления значений, с помощью дисперсионного анализа.
Гипотеза H0 примет вид σF 2 =0. В случае справедливости этой гипотезы
M(S)= M(S)= σ2 .
Таким образом, процедура однофакторного дисперсионного анализа состоит в проверке гипотезы H0 о том, что имеется одна группа однородных экспериментальных данных против альтернативы о том, что таких групп больше, чем одна. Под однородностью понимается одинаковость средних значений и дисперсий в любом подмножестве данных. При этом дисперсии могут быть как известны, так и неизвестны заранее. Если имеются основания полагать, что известная или неизвестная дисперсия измерений одинакова по всей совокупности данных, то задача однофакторного дисперсионного анализа сводится к исследованию значимости различия средних в группах данных.
- Глава 1. Характеристика статистики и применение математических методов статистики в прогнозировании ……………………………………..5
- Глава 2. Сущность корреляционного, регрессивного анализа…………..20
- Глава 3.Оценка и прогноз дисперсионного анализа……………………....31
- Введение
- Глава 1. Характеристика статистики и применение математических методов статистики в прогнозировании
- Статистика: понятие, содержание
- 1.2. Методы математической статистики в прогнозировании
- 1.3. Процесс прогнозирования, опирающийся на методы математической статистики
- Глава 2. Сущность корреляционного, регрессивного анализа
- Теоретический аспект изучения корреляционно-регрессионного анализа
- 2.2. Применение и сравнение корреляционно-регрессионного метода на практике
- Глава 3. Оценка и прогноз дисперсионного анализа
- 3.1 Оценка дисперсионного анализа
- Задачи однофакторного дисперсионного анализа
- 3.3. Задачи многофакторного дисперсионного анализа
- Заключение
- Список использованных источников и литературы
- Базовая таблица дисперсионного анализа
- Базовая таблица дисперсионного анализа