logo

2.1. Аксиоматический метод

Аксиоматический метод – это такой способ построения и систематизации научного знания в форме так называемых аксиоматических теорий, при котором некоторые утверждения выбираются в качестве исходных положений (аксиом), а все остальные утверждения (теоремы) этой теории доказывают, исходя лишь из аксиом с помощью чисто логических рассуждений. И аксиомы, и теоремы – это высказывания на некотором языке о некоторых понятиях. Одни понятия обозначают объекты, которыми занимается теория, другие обозначают отношения между ними. Одни понятия можно определять через другие. В какой-то момент необходимо объявить некоторые понятия неопределяемыми (исходными), и через них определять все остальные понятия (определяемые или производные).

Зародился аксиоматический метод в Древней Греции. В сочинении Евклида «Начала» (3 век до н.э.) были систематизированы известные в то время геометрические сведения. В «Началах» был развит аксиоматический метод к построению геометрии, состоящий в том, что сначала формулируются аксиомы, а затем на их основе посредством рассуждений доказываются теоремы. На рубеже 19-20 веков немецкий математик Давид Гильберт записал евклидову геометрию в виде формальной аксиоматической теории, дописав некоторые недостающие аксиомы, и показал, что всякое утверждение можно в данной теории либо доказать, либо опровергнуть.

Чтобы пользоваться аксиоматическим методом построения теории нужно: 1. выбрать исходные понятия; 2. сформулировать аксиомы об этих понятиях; 3. выводить новые утверждения (теоремы) о них, пользуясь логикой и аксиомами.

И утверждения, и доказательства можно записывать в естественном языке, пользуясь «психологическим» понятием доказательства, которое В.А. Успенский сформулировал так: доказательство – это рассуждение, убеждающее нас настолько, что с его помощью мы готовы убеждать других. Тогда с помощью этого метода будет строиться (неформальная) аксиоматическая теория. Но недостатком естественного языка является тот факт, что слова не всегда имеют ясный смысл. Поэтому теорию можно строить иначе: 1. формализация языка: фиксировать точный (формальный) язык, на котором будут записываться все утверждения излагаемой теории; 2. формализация логики: точно задать, что называется доказательством. Построенная таким образом теория – это формальная аксиоматическая теория, описанный способ построения теории – формальный аксиоматический метод. Формализация нужна, чтобы достичь абсолютной достоверности выводов.

Выписывание аксиом (доказательство теорем на их основе, непротиворечивость системы аксиом) будучи записью одних фраз и получение новых из старых по некоторым правилам логического вывода, при этом с гарантией непротиворечивости является синтаксисом. Рассмотрение структур (объектов и отношений между ними – проверка того, что для структуры выполняются те или иные фразы, и тем самым построение модели и обнаружение совместности системы аксиом – это семантика.