2. Определение фракталов. Классификация фракталов.
Первые идеи фрактальной геометрии возникли в 19 веке. Кантор с помощью простой рекурсивной (повторяющейся) процедуры превратил линию в набор несвязанных точек (так называемая Пыль Кантора). Он брал линию и удалял центральную треть и после этого повторял то же самое с оставшимися отрезками. Пеано нарисовал особый вид линии (рисунок №1). Для ее рисования Пеано использовал следующий алгоритм.
На первом шаге он брал прямую линию и заменял ее на 9 отрезков длинной в 3 раза меньшей, чем длинна исходной линии (Часть 1 и 2 рисунка 1). Далее он делал то же самое с каждым отрезком получившейся линии. И так до бесконечности. Ее уникальность в том, что она заполняет всю плоскость. Доказано, что для каждой точки на плоскости можно найти точку, принадлежащую линии Пеано. Кривая Пеано и пыль Кантора выходили за рамки обычных геометрических объектов. Они не имели четкой размерности. Пыль Кантора строилась вроде бы на основании одномерной прямой, но состояла из точек (размерность 0). А кривая Пеано строилась на основании одномерной линии, а в результате получалась плоскость. Вплоть до 20 века шло накопление данных о таких странных объектах, без какой либо попытки их систематизировать. Так было, пока за них не взялся Бенуа Р. Мандельброт (Benoit Mandelbrot), математик из Исследовательского центра им. Томаса Уотстона при IBM - отец современной фрактальной геометрии, который и предложил термин "фрактал" для описания объектов, структура которых повторяется при переходе к все более мелким масштабам.. Работая в IBM математическим аналитиком, он изучал шумы в электронных схемах, которые невозможно было описать с помощью статистики. Постепенно сопоставив факты, он пришел к открытию нового направления в математике - фрактальной геометрии.
Мандельброт вывел слово fractal от латинского слова fractus, что означает разбитый (поделенный на части). И одно из определений фрактала - это геометрическая фигура, состоящая из частей и которая может быть поделена на части, каждая из которых будет представлять уменьшенную копию целого (по крайней мере, приблизительно). Фрактал - это такой объект, для которого не важно, с каким усилением его рассматривать в увеличительное стекло, но при всех его увеличениях структура остается одной и той же. Большие по масштабу структуры полностью повторяют структуры, меньшие по масштабу. Так, в одном из примеров Мандельброт предлагает рассмотреть линию побережья с самолета, стоя на ногах и в увеличительное стекло. Во всех случаях получим одни и те же узоры, но только меньшего масштаба.
Чтобы представить себе фрактал понаглядней рассмотрим пример, приведенный в книге Б.Мандельброта "The Fractal Geometry of Nature" ставший классическим - "Какова длина берега Британии?". Ответ на этот вопрос не так прост, как кажется. Все зависит от длины инструмента, которым мы будем пользоваться. Померив берег с помощью километровой линейки мы получим какую-то длину. Однако мы пропустим много небольших заливчиков и полуостровков, которые по размеру намного меньше нашей линейки. Уменьшив размер линейки до, скажем, 1 метра - мы учтем эти детали ландшафта, и, соответственно длина берега станет больше. Пойдем дальше и измерим длину берега с помощью миллиметровой линейки, мы тут учтем детали, которые больше миллиметра, длина будет еще больше. В итоге ответ на такой, казалось бы, простой вопрос может поставить в тупик кого угодно - длина берега Британии бесконечна.
В самом простом случае небольшая часть фрактала содержит информацию о всем фрактале. Строгое определение самоподобных множеств было дано Дж. Хатчинсоном в 1981 году. Он назвал множество самоподобным, если оно состоит из нескольких компонент, подобных всему этому множеству, т.е. компонент получаемых афинными преобразованиями - поворотом, сжатием и отражением исходного множества. Однако самоподобие – это хотя и необходимое, но далеко не достаточное свойство фракталов. Ведь нельзя же, в самом деле, считать фракталом точку, или плоскость, расчерченную клетками.
Главная особенность фракталов заключается в том, что их размерность не укладывается в привычные геометрические представления. Фракталам характерна геометрическая «изрезанность». Поэтому используется специальное понятие фрактальной размерности, введенное Феликсом Хаусдорфом (1868-1942) и Абрамом Самойловичем Безиковичем (1891-1970). Применительно к идеальным объектам классической евклидовой геометрии она давала те же численные значения, что и известная задолго до нее так называемая топологическая размерность (иначе говоря, была равна нулю для точки, единице - для гладкой плавной линии, двум - для фигуры и поверхности, трем - для тела и пространства). Но совпадая со старой, топологической, размерностью на идеальных объектах, новая размерность обладала более тонкой чувствительностью ко всякого рода несовершенствам реальных объектов, позволяя различать и индивидуализировать то, что прежде было безлико и неразличимо. Так, отрезок прямой, отрезок синусоиды и самый причудливый меандр неразличимы с точки зрения топологической размерности - все они имеют топологическую размерность, равную единице, тогда как их размерность Хаусдорфа - Безиковича различна и позволяет числом измерять степень извилистости.
Размерность фрактальных объектов не является целым числом, характерным для привычных геометрических. Вместе с тем, в большинстве случаев, фракталы напоминают объекты, плотно занимающие реальное пространство, но не использующее его полностью.
Классификация фракталов.
Фракталы делятся на группы. Самые большие группы это:
-
геометрические фракталы
-
алгебраические фракталы
-
системы итерируемых функций
-
стохастические фракталы
Геометрические фракталы
Именно с них и начиналась история фракталов. Этот тип фракталов получается путем простых геометрических построений. Обычно при построении этих фракталов поступают так: берется аксиома - набор отрезков, на основании которых будет строиться фрактал. Далее к этой аксиоме применяют набор правил, который преобразует ее в какую-либо геометрическую фигуру. Далее к каждой части этой фигуры применяют опять тот же набор правил. С каждым шагом фигура будет становиться все сложнее и сложнее, и если мы проведем (по крайней мере, в уме) бесконечное количество преобразований - получим геометрический фрактал.
Рассмотренная выше кривая Пеано является геометрическим фракталом. Классические примеры геометрических фракталов - Снежинка Коха, Лист, Треугольник Серпинского, Драконова ломаная).
Снежинка Коха | Лист | Треугольник Серпинского |
Драконова ломаная.
Алгебраические фракталы.
Вторая большая группа фракталов - алгебраические. Свое название они получили за то, что их строят, на основе алгебраических формул иногда весьма простых. Методов получения алгебраических фракталов несколько.
Множество Мандельброта | |
Множество Жюлиа | |
Множество Ньютона |
Системы интегрируемых функций.
Следующую группу составляют фракталы, которые генерируются согласно методу "систем итеративных функций" — IPS (Iterated Functions Systems). Этот метод может быть описан, как последовательный итеративный расчет координат новых точек в пространстве:
xk+1 = Fx (xk, yk); yk+1 = Fy (xk, yk),
где Fx и Fy— функции преобразования координат, например, аффинного преобразования. Эти функции и определяют форму фрактала. В случае аффинного преобразования необходимо найти соответствующие числовые значения коэффициентов.
Будем записывать СИФ в формате FRACTINT:
Fractal {
a1 b1 c1 d1 e1 f1 p1
a2 b2 c2 d2 e2 f2 p2
..............
an bn cn dn en fn pn
}
Такой записи соответствует следующая система итерируемых функций в пространстве :
Числа суть вероятности выбора соответствующих преобразований в рандомизированном алгоритме.
Стохастические фракталы
Типичный представитель данного класса фракталов "Плазма". Для ее построения возьмем прямоугольник и для каждого его угла определим цвет. Далее находим центральную точку прямоугольника и раскрашиваем ее в цвет равный среднему арифметическому цветов по углам прямоугольника плюс некоторое случайное число. Чем больше случайное число - тем более "рваным" будет рисунок. Если мы теперь скажем, что цвет точки это высота над уровнем моря - получим вместо плазмы - горный массив. Именно на этом принципе моделируются горы в большинстве программ. С помощью алгоритма, похожего на плазму строится карта высот, к ней применяются различные фильтры, накладываем текстуру и пожалуйста фотореалистичные горы готовы.
Рассмотрим более подробно технологию и алгоритмы построения основных видов фрактальных изображений.
- Лекция Фрактальная графика.
- 1. Понятие о фракталах.
- 2. Определение фракталов. Классификация фракталов.
- 3. Системы итерируемых функций.
- 4. Геометрические фракталы.
- 4.1. Снежинка Коха
- Вариации на тему кривой Коха
- 4.2. Треугольник Серпинского
- Построение треугольника Серпинского с помощью рекурсии
- 4.3. Драконова ломаная
- 5. Алгебраические фракталы
- 5.1. Множество Мандельброта.
- 5.2.Множество Жюлиа
- 5.3. Фрактал Ньютона
- 7. Фракталы в природе (frakt-lecture.Pdf)