Тести простоти
Решето Ератосфена, решето Сундарама та решето Аткіна дають прості способи складання початкового списку простих чисел до певного значення.
Однак, на практиці, замість отримання списку простих чисел найчастіше потрібно перевірити, чи є дане число простим. Алгоритми, які вирішують це завдання, називають тестами простоти. Існує безліч поліноміальних тестів простоти, але більшість з них є стохастичні (наприклад, тест Міллера - Рабина) і використовуються для потреб криптографії. Тільки в 2002 році було доведено, що завдання перевірки на простоту в загальному вигляді можна розв'язати за поліноміальний час, але запропонований детермінований алгоритм має досить велику складність, що ускладнює його застосування на практиці.
Для деяких класів чисел існують спеціалізовані ефективні тести простоти. Наприклад, для перевірки на простоту чисел Мерсена використовують тест Люка - Лемера, а для перевірки на простоту чисел Ферма — тест Пепіно.
- 1.Натуральні та цілі числа
- Цілі числа
- Алгебраїчні властивості
- Ознаки подільності чисел в десятковій системі
- 2.Метод математичної індукції
- Формулювання
- Принцип повної математичної індукції
- Розклад натуральних чисел на добуток простих
- Тести простоти
- Скільки існує простих чисел?
- Найбільше відоме просте число
- Деякі властивості
- Відкриті питання