logo search
Osorgin

Классификация математических моделей в зависимости от методов реализации.

Математическое моделирование - это идеальное научное зна­ковое формальное моделирование, при котором объект описывается на языке математики, а модель исследуется с использованием математических методов.

Классификация математических моделей в зависимости от методов реализации (рис. 1.12)

Метод реализации модели относят к аналитическим, если он позволяет получить выходные параметры в виде аналитических выражений, т.е. выражений, в которых используется не более чем счет­ная совокупность арифметических операций и переходов к пределу.

Частным случаем аналитических выражений являются алгебра­ические выражения, в которых используется конечное или счетное число арифметических операций, операций возведения в целочис­ленную степень и извлечения корня.

Очень часто аналитическое решение для модели представляют в элементарных или специальных функциях: показательных, тригонометрических и т.п. Для по­лучения значений этих функций при конкретных значениях вход­ных параметров используют их разложение в ряды (например, Тей­лора). Учитывая различное число членов ряда, можно вычислять значе­ние функции с различной степенью точности. Таким образом, значение функции при каждом значении аргумента в этом случае определяется приближенно. Модели, использующие подобный при­ем, называются приближенными.

Аналитические методы реализации модели являются более ценными в том плане, что позволяют с меньшими вычислительными затратами изучить свойства объекта моделирования, применяя тра­диционные хорошо развитые математические методы анализа. Кроме того, знание аналитического выражения для искомых параметров позволяет исследовать фундаментальные свойства объекта, его качественное поведение, строить новые ги­потезы о его внутренней структуре. Следует отметить, что возмож­ности аналитических методов существенно зависят от уровня раз­вития соответствующих разделов математики.

К сожалению, существующие математичес­кие методы позволяют получить аналитические решения только для относительно несложных математических моделей. В большинстве случаев при исследова­нии моделей приходится использовать алгоритмические подходы, позволяющие получить лишь приближенные значения искомых параметров.

При численном подходе математические соотно­шения модели заменяется конечномерным аналогом. Это чаще всего достигается дискретизацией исходных соотношений, т.е. переходом от функций непрерывного аргумента к функциям дискрет­ного аргумента. После дискретизации исходной задачи выполня­ется построение вычислительного алгоритма, т.е. последовательно­сти арифметических и логических действий, выполняемых на ЭВМ и позволяющих за конечное число шагов получить решение диск­ретной задачи. Найденное решение дискретной задачи принимает­ся за приближенное решение исходной математической задачи.

Степень приближения искомых параметров модели зависит как от погрешностей са­мого метода, связанных с заменой исходной модели ее дискретным аналогом, так и от ошибок округления, возникающих при выполне­нии любых расчетов на ЭВМ в связи с конечной точностью пред­ставления чисел в ее памяти. Основным требованием к вычисли­тельному алгоритму является необходимость получения решения исходной задачи с заданной точностью за конечное число шагов.

Алгоритмические модели, использующие как численный, так и имитационный подход, не позволяют получить решения задач в аналитической форме, что затрудняет и усложняет процесс анали­за результатов моделирования. Так как применение моделей дан­ного типа возможно лишь при наличии вычислительной техники, то их эффективность зависит от мощности и быстродействия ЭВМ. Несомненным достоинством алгоритмических моделей является отсутствие принципиальных ограничений на сложность модели, что позволяет применять их для исследования систем произвольной сложности.

Использование математической модели, построенной алгорит­мическими методами, аналогично проведению экспериментов с реальным объектом, только вместо реального эксперимента с объек­том - проводится вычислительный эксперимент с его моделью. Зада­ваясь конкретным набором значений исходных параметров модели, в результате вычислительного эксперимента находим конкретный набор приближенных значений искомых параметров. Для исследо­вания поведения объекта при новом наборе исходных данных необ­ходимо проведение нового вычислительного эксперимента.