logo
Osorgin

Выбор и обоснование выбора метода решения задачи.

При использовании разработанных математических моделей, как правило, требуется найти зависимость некоторых неизвестных заранее параметров объекта моделирования (например, координат и скорости центра масс тела), удовлетворяющих определенной системе уравнений. Таким образом, поиск решения задачи сводится к отысканию некоторых зависимостей искомых величин от исходных параметров модели. Как было отмечено ранее, все методы решения задач, составляющих «ядро» математи­ческих моделей, можно подразделить на аналитические и алгорит­мические.

Аналитические методы более удобны для пос­ледующего анализа результатов, но применимы лишь для относи­тельно простых моделей. В случае, если математическая задача допускает аналитическое решение, оно, без сомнения, предпочтительнее численного.

Алгорит­мические методы сводятся к некоторому алгоритму, ре­ализующему вычислительный эксперимент с использованием ЭВМ. Точность моделирования в подобном эксперименте существенно за­висит от выбранного метода и его параметров (например, шага ин­тегрирования). Алгоритмические методы, как правило, более тру­доемки в реализации, требуют обширной библиотеки специального программного обеспечения и мощной вычислитель­ной техники.

Общим для всех численных методов является сведение мате­матической задачи к конечномерной. Это чаще всего достига­ется дискретизацией исходной задачи, т.е. переходом от функции непрерывного аргумента к функциям дискретного аргумента. На­пример, траектория центра тяжести баскетбольного мяча опреде­ляется не как непрерывная функция времени, а как дискретная функция координат от времени. Полученное решение дискретной задачи принимается за прибли­женное решение исходной математической задачи.

Применение любого численного метода неминуемо приводит к погрешности результатов решения задачи. Выделяют три основ­ных составляющих погрешности при численном ре­шении исходной задачи:

Численный, или приближенный, метод реализуется всегда в виде вычислительного алгоритма. Прежде всего, алгоритм должен быть реализуем - обеспечивать решение задачи за допустимое машинное время. Важной характе­ристикой алгоритма является его погрешность. Для очень малых значений погрешности время вычислений может быть недопустимо большим. Поэтому на практике добиваются некоторого компромисса между точностью и затрачиваемым машинным временем.

Если погрешность в процессе вычислений неограниченно возрастает, то такой алгоритм называ­ется неустойчивым, или расходящимся. В противном случае алгоритм называется устойчивым, или сходящимся.