23. Линейные операции над матрицами, перемножение матриц.
1. Равенство матриц. Две матрицы A и B с одинаковыми размерностями [m*n], называются равными если элементы матриц с одинаковыми индексами совпадают.
2. Сложение матриц. Матрица C=A+B, называется сумма матриц A и B, если каждый элемент матрицы C является суммой элементов матриц с одинаковыми индексами
Cij=aij+bij(i=1,2…m; j=1,2…n)
Свойства сложения матриц:
Коммутативность A+B=B+A
Ассоциативность (A+B)+C=A+(B+C)
A+0=A
3. Умножение матриц на число. C= λ*A, A[m,n], если для каждого элемента матрицы C, справедливо соотношение Cij= λ *aij(i=1,2..m; j=1,2..n)
Свойства умножения матрицы на число:
(λ*m)*A= λ*(m*A)
λ(A+B)=A+ λB
(λ+m)A= λA+mA
4. Умножение матриц. Матрица C[m,n]=A[m,r]*B[r,n], если для любого элемента матрицы C имеент место быть соотношение:
Cij=ai1b1j+ai2b2j+..+airbrj
То есть строка на столбец.
Свойства умножения:
A*B≠B*A
(A*B)*C≠A*(B*c)
A+B)*C=A*C+B*C
A*E=A
A*0=0
Det(A*B)=detA*DetB
- 1. Вектора. Основные понятия.
- 2. Линейные операции над векторами. Свойства этих операций.
- 3. Проекции вектора на ось.
- 4. Линейная зависимость и независимость векторов.
- 5. Декартов базис. Длина вектора в декартовом базисе.
- 6. Скалярное произведение. Выражение скалярного произведения через координаты.
- 7. Векторное произведение. Выражение через координаты. Физический смысл.
- 8. Смешанное произведение, выражение через координаты, геометрический смысл.
- 9. Предмет аналитической геометрии, 2 её основные задачи.
- 10. Плоскости в пространстве: вывод канонического уравнения, приведение общих уравнений к каноническим.
- 12. Взаимное расположение двух прямых в пространстве, взаимное расположение прямой и плоскости.
- 13. Прямая на плоскости: различные виды уравнений, взаимное расположение двух прямых.
- 20. Преобразование координат: параллельный перенос, поворот осей.
- 21. Приведение общего уравнения прямой к каноническому виду(можно на конкретном примере).
- 22. Матрицы, основные определения.
- 23. Линейные операции над матрицами, перемножение матриц.
- 24. Обратная матрица, её построение.
- 25. Матричный метод решения линейных систем. Формулы Крамера.
- 26. Ранг матрицы. Элементарные преобразования матрицы.