logo search
Перельман Я

Соперники логарифмов

Ранее изобретения логарифмов потребность в ускорении выкладок породила таблицы иного рода, с помощью которых действие умножения заменяется не сложением, а вычитанием. Устройство этих таблиц основано на тождестве

,

в верности которого легко убедиться, раскрыв скобки.

Имея готовые четверти квадратов, можно находить произведение двух чисел, не производя умножения, а вычитая из четверти квадрата суммы этих чисел четверть квадрата их разности. Те же таблицы облегчают возвышение в квадрат и извлечение квадратного корня, а в соединении с таблицей обратных чисел упрощают и действие деления. Их преимущество перед таблицами логарифмическими состоит в том, что с помощью их получаются результаты точные, а не приближенные. Зато они уступают логарифмическим в ряде других пунктов, практически гораздо более важных. В то время как таблицы четвертей квадратов позволяют перемножать только два числа, логарифмы дают возможность находить сразу произведение любого числа множителей, а кроме того – возвышать в любую степень и извлекать корни с любым показателем (целым или дробным). Вычислять, например, сложные проценты с помощью таблиц четвертей квадратов нельзя.

Тем не менее таблицы четвертей квадратов издавались и после того, как появились логарифмические таблицы всевозможных родов. В 1856 г. во Франции вышли таблицы под заглавием:

"Таблица квадратов чисел от 1 до 1000 миллионов, помощью которой находят точное произведение чисел весьма простым приемом, более удобным, чем помощью логарифмов. Составил Александр Коссар".

Идея эта возникает у многих, не подозревающих о том, что она уже давно осуществлена. Ко мне раза два обращались изобретатели подобных таблиц как с новинкой и очень удивлялись, узнав, что их изобретение имеет более чем трехсотлетнюю давность.

Другим, более молодым соперником логарифмов являются вычислительные таблицы, имеющиеся во многих технических справочниках. Это – сводные таблицы, содержащие следующие графы: квадраты чисел, кубы, квадратные корни, кубические корни, обратные числа, длины окружности и площади кругов для чисел от 2 до 1000. Для многих технических расчетов таблицы эти очень удобны, однако они не всегда достаточны; логарифмические имеют гораздо более обширную область применения.

<Paaaa