Пифагоровы числа
Удобный и очень точный способ, употребляемый землемерами для проведения на местности перпендикулярных линий, состоит в следующем. Пусть через точку А требуется к прямой MN провести перпендикуляр (рис. 13).
Рис. 13.
Откладывают от А по направлению AM три раза какое-нибудь расстояние а. Затем завязывают на шнуре три узла, расстояния между которыми равны 4а и 5а. Приложив крайние узлы к точкам А и В, натягивают шнур за средний узел. Шнур расположится треугольником, в котором угол А – прямой.
Этот древний способ, по-видимому, применявшийся еще тысячелетия назад строителями египетских пирамид, основан на том, что каждый треугольник, стороны которого относятся, как 3 : 4 : 5, согласно общеизвестной теореме Пифагора, – прямоугольный, так как
32 + 42 = 52.
Кроме чисел 3, 4, 5, существует, как известно, бесчисленное множество целых положительных чисел а, b, с, удовлетворяющих соотношению
a2 + b2 = c2.
Они называются пифагоровыми числами. Согласно теореме Пифагора такие числа могут служить длинами сторон некоторого прямоугольного треугольника; поэтому а и b называют "катетами", а с – "гипотенузой".
Ясно, что если а, b, с есть тройка пифагоровых чисел, то и ра, рb, рс, где р – целочисленный множитель, – пифагоровы числа. Обратно, если пифагоровы числа имеют общий множитель, то на этот общий множитель можно их все сократить, и снова получится тройка пифагоровых чисел. Поэтому будем вначале исследовать лишь тройки взаимно простых пифагоровых чисел (остальные получаются из них умножением на целочисленный множитель р).
Покажем, что в каждой из таких троек а, b, с один из "катетов" должен быть четным, а другой нечетным, Станем рассуждать "от противного". Если оба "катета" а и b четны, то четным будет число a2 + b2, а значит, и "гипотенуза". Это, однако, противоречит тому, что числа а, b, с не имеют общих множителей, так как три четных числа имеют общий множитель 2. Таким образом, хоть один из "катетов" а, b нечетен.
Остается еще одна возможность: оба "катета" нечетные, а "гипотенуза" четная. Нетрудно доказать, что этого не может быть. В самом деле: если "катеты" имеют вид
2х + 1 и 2y + 1,
то сумма их квадратов равна
,
т. е. представляет собой число, которое при делении на 4 дает в остатке 2. Между тем квадрат всякого четного числа должен делиться на 4 без остатка. Значит, сумма квадратов двух нечетных чисел не может быть квадратом четного числа; иначе говоря, наши три числа – не пифагоровы.
Итак, из "катетов" а, b один четный, а другой нечетный. Поэтому число a2 + b2 нечетно, а значит, нечетна и "гипотенуза" с.
Предположим, для определенности, что нечетным является "катет" а, а четным b. Из равенства
a2 + b2 = c2
мы легко получаем:
a2 = c2 – b2 = (c + b)(c – b).
Множители с + b и с – b, стоящие в правой части, взаимно просты. Действительно, если бы эти числа имели общий простой множитель, отличный от единицы, то на этот множитель делились бы и сумма
,
и разность
,
и произведение
,
т. е. числа 2с, 2b и а имели бы общий множитель. Так как а нечетно, то этот множитель отличен от двойки, и потому этот же общий множитель имеют числа а, b, с, чего, однако, не может быть. Полученное противоречие показывает, что числа с + b и с – b взаимно просты.
Но если произведение взаимно простых чисел есть точный квадрат, то каждое из них является квадратом, т. е.
Решив эту систему, найдем:
,
Итак, рассматриваемые пифагоровы числа имеют вид
,
где m и n – некоторые взаимно простые нечетные числа. Читатель легко может убедиться и в обратном: при любых нечетных m и п написанные формулы дают три пифагоровых числа а, b, с.
Вот несколько троек пифагоровых чисел, получаемых при различных т и п:
при т = 3, n = 1 32 + 42 = 52 при т = 5, n = 1 52 + 122 = 132 при т = 7, n = 1 72 + 242 = 252 при т = 9, n = 1 92 + 402 = 412 при т = 11, n = 1 112 + 602 = 612 при т = 13, n = 1 132 + 842 = 852 при т = 5, n = 3 152 + 82 = 172 при т = 7, n = 3 212 + 202 = 292 при т = 11, n = 3 332 + 562 = 652 при т = 13, n = 3 392 + 802 = 892 при т = 7, n = 5 352 + 122 = 372 при т = 9, n = 5 452 + 282 = 532 при т = 11, n = 5 552 + 482 = 732 при т = 13, n = 5 652 + 722 = 972 при т = 9, n = 7 632 + 162 = 652 при т = 11, n = 7 772 + 362 = 852
(Все остальные тройки пифагоровых чисел или имеют общие множители, или содержат числа, бóльшие ста.)
Пифагоровы числа обладают вообще рядом любопытных особенностей, которые мы перечисляем далее без доказательств:
- Астрономические числа
- Сколько весит весь воздух
- Горение без пламени и жара
- Разнообразие погоды
- Замок с секретом
- Суеверный велосипедист
- Итоги повторного удвоения
- В миллионы раз быстрее
- 10000 Действий в секунду
- Число возможных шахматных партий
- Секрет шахматного автомата
- Тремя двойками
- Жизнь Диофанта
- Лошадь и мул
- Четверо братьев
- Птицы у реки
- Прогулка
- Артель косцов
- Коровы на лугу
- Задача Ньютона
- Перестановка часовых стрелок
- Совпадение часовых стрелок
- Искусство отгадывать числа
- Мнимая нелепость
- Уравнение думает за нас
- Курьезы и неожиданности
- В парикмахерской
- Трамвай и пешеход
- Пароход и плоты
- Две жестянки кофе
- Вечеринка
- Морская разведка
- На велодромe
- Состязание мотоциклов
- Средняя скорость езды
- Быстродействующие вычислительные машины
- 1) 34 36 20 2) 33 37 21 3) 32 36 22 4) 33 35 23 5) 32 37 24 6) 34 35 25 18-Й приказ: передача управления в первую ячейку.
- Цифры 1, 5 и 6
- Доплата
- Делимость на 11
- Номер автомашины
- Делимость на 19
- Число простых чисел
- Когда без алгебры проще
- Ревизия магазина
- Покупка почтовых марок
- Покупка фруктов
- Отгадать день рождения
- Продажа кур
- Два числа и четыре действия
- Какой прямоугольник?
- Два двузначных числа
- Пифагоровы числа
- 1) Один из "катетов" должен быть кратным трем. 2) Один из "катетов" должен быть кратным четырем. 3) Одно из пифагоровых чисел должно быть кратно пяти.
- Неопределенное уравнение третьей степени
- Сто тысяч за доказательство теоремы
- Пчелиный рой
- Задача Эйлера
- Громкоговорители
- Алгебра лунного перелета
- "Трудная задача"
- Какие числа?
- Где устроить полустанок?
- Как провести шоссе?
- Когда произведение наибольшее?
- Когда сумма наименьшая?
- Постройка дома
- Дачный участок
- Желоб наибольшего сечения
- Воронка наибольшей вместимости
- Самое яркое освещение
- Алгебра на клетчатой бумаге
- Поливка огорода
- Кормление кур
- Бригада землекопов
- Покупка лошади
- Вознаграждение воина
- Соперники логарифмов
- Эволюция логарифмических таблиц
- Логарифмические диковинки
- Логарифмы на эстраде
- Логарифмы на животноводческой ферме
- Логарифмы в музыке
- Звезды, шум и логарифмы
- Логарифмы в электроосвещении
- Завещания на сотни лет
- Непрерывный рост капитала
- Число "е"
- Логарифмическая комедия
- Любое число – тремя двойками