Число "е"
Полученное число 2,718..., играющее в высшей математике огромную роль, – не меньшую, пожалуй, чем знаменитое число , – имеет особое обозначение: е. Это – число иррациональное: оно не может быть точно выражено конечным числом цифр [Кроме того, оно, как и число , трансцендентно, т. е. не может получиться в результате решения какого бы то ни было алгебраического уравнения с целыми коэффициентами], но вычисляется только приближенно, с любой степенью точности, с помощью следующего ряда:
Из приведенного выше примера с ростом капитала по сложным процентам легко видеть, что число е есть предел выражения
при беспредельном возрастании п.
По многим причинам, которых мы здесь изложить не можем, число е очень целесообразно принять за основание системы логарифмов. Такие таблицы ("натуральных логарифмов") существуют и находят себе широкое применение в науке и технике. Те логарифмы-исполины из 48, из 61, из 102 и из 260 цифр, о которых мы говорили ранее, имеют основанием именно число е.
Число е появляется нередко там, где его вовсе не ожидали. Поставим себе, например, такую задачу:
На какие части надо разбить данное число а, чтобы произведение всех частей было наибольшее?
Мы уже знаем, что наибольшее произведение при постоянной сумме дают числа тогда, когда они равны между собой. Ясно, что число а надо разбить на равные части. Но на сколько именно равных частей? На две, на три, на десять? Приемами высшей математики можно установить, что наибольшее произведение получается, когда части возможно ближе к числу е.
Например, 10 надо разбить на такое число равных частей, чтобы части были возможно ближе к 2,718... Для этого надо найти частное
Так как разделить на 3,678... равных частей нельзя, то приходится выбрать делителем ближайшее целое число 4. Мы получим, следовательно, наибольшее произведение частей 10, если эти части равны , т. е. 2,5.
Значит,
(2,5)4 = 39,0625
есть самое большое число, какое может получиться от перемножения одинаковых частей числа 10. Действительно, разделив 10 на 3 или на 5 равных частей, мы получим меньшие произведения:
Число 20 надо для получения наибольшего произведения его частей разбить на 7 одинаковых частей, потому что
20 : 2,718... = 7,36 7.
Число 50 надо разбить на 18 частей, а 100 – на 37, потому что
50 : 2,718... = 18,4, 100 : 2,718... = 36,8.
Число е играет огромную роль в математике, физике, астрономии и других науках. Вот некоторые вопросы, при математическом рассмотрении которых приходится пользоваться этим числом (список можно было бы увеличивать неограниченно): Барометрическая формула (уменьшение давления с высотой), Формула Эйлера [О ней см. ст. "Жюль-верновский силач и формула Эйлера" во 2-й книге моей "Занимательной физики".], Закон охлаждения тел, Радиоактивный распад и возраст Земли, Колебания маятника в воздухе, Формула Циолковского для скорости ракеты [См. мою книгу "Межпланетные путешествия".], Колебательные явления в радиоконтуре, Рост клеток.
<Paaaa
- Астрономические числа
- Сколько весит весь воздух
- Горение без пламени и жара
- Разнообразие погоды
- Замок с секретом
- Суеверный велосипедист
- Итоги повторного удвоения
- В миллионы раз быстрее
- 10000 Действий в секунду
- Число возможных шахматных партий
- Секрет шахматного автомата
- Тремя двойками
- Жизнь Диофанта
- Лошадь и мул
- Четверо братьев
- Птицы у реки
- Прогулка
- Артель косцов
- Коровы на лугу
- Задача Ньютона
- Перестановка часовых стрелок
- Совпадение часовых стрелок
- Искусство отгадывать числа
- Мнимая нелепость
- Уравнение думает за нас
- Курьезы и неожиданности
- В парикмахерской
- Трамвай и пешеход
- Пароход и плоты
- Две жестянки кофе
- Вечеринка
- Морская разведка
- На велодромe
- Состязание мотоциклов
- Средняя скорость езды
- Быстродействующие вычислительные машины
- 1) 34 36 20 2) 33 37 21 3) 32 36 22 4) 33 35 23 5) 32 37 24 6) 34 35 25 18-Й приказ: передача управления в первую ячейку.
- Цифры 1, 5 и 6
- Доплата
- Делимость на 11
- Номер автомашины
- Делимость на 19
- Число простых чисел
- Когда без алгебры проще
- Ревизия магазина
- Покупка почтовых марок
- Покупка фруктов
- Отгадать день рождения
- Продажа кур
- Два числа и четыре действия
- Какой прямоугольник?
- Два двузначных числа
- Пифагоровы числа
- 1) Один из "катетов" должен быть кратным трем. 2) Один из "катетов" должен быть кратным четырем. 3) Одно из пифагоровых чисел должно быть кратно пяти.
- Неопределенное уравнение третьей степени
- Сто тысяч за доказательство теоремы
- Пчелиный рой
- Задача Эйлера
- Громкоговорители
- Алгебра лунного перелета
- "Трудная задача"
- Какие числа?
- Где устроить полустанок?
- Как провести шоссе?
- Когда произведение наибольшее?
- Когда сумма наименьшая?
- Постройка дома
- Дачный участок
- Желоб наибольшего сечения
- Воронка наибольшей вместимости
- Самое яркое освещение
- Алгебра на клетчатой бумаге
- Поливка огорода
- Кормление кур
- Бригада землекопов
- Покупка лошади
- Вознаграждение воина
- Соперники логарифмов
- Эволюция логарифмических таблиц
- Логарифмические диковинки
- Логарифмы на эстраде
- Логарифмы на животноводческой ферме
- Логарифмы в музыке
- Звезды, шум и логарифмы
- Логарифмы в электроосвещении
- Завещания на сотни лет
- Непрерывный рост капитала
- Число "е"
- Логарифмическая комедия
- Любое число – тремя двойками