Логическое следствие в алгебре высказываний
Говорят, что формула ψ(х1,...,хп) АВ является логическим следствием формул φ1(х1,...,хп),…,φm(х1,...,хп) АВ (обозначается ), если для любыхиз соотношенийследует. Формулыназываются гипотезами.
Пример 3. Доказать, что φ, φ→ψ, ψ→χ
Построим таблицы истинности для каждой формулы:
φ | ψ | χ | φ→ψ | ψ→χ |
0 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 1 | 1 |
0 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 1 |
1 | 0 | 1 | 0 | 1 |
1 | 1 | 0 | 1 | 0 |
1 | 1 | 1 | 1 | 1 |
Из таблицы истинности видно, что когда все гипотезы принимают значение равное 1, формула χ тоже принимает значение 1, значит, χ является логическим следствием, что и требовалось доказать.
Формула φ(x1,x2,…,xn) называется выполнимой (опровержимой), если существует такой набор значений переменных, на котором формула принимает значение 1 (соответственно 0) .
Пример 4. Формула х∧ у является одновременно выполнимой и опровержимой, поскольку 0∧0=0, а 1∧1=1.
Формула φ(x1,…,xn) называется тождественно истинной, общезначимой или тавтологией (тождественно ложной или противоречием), если эта формула принимает значение 1 (соответственно 0) на всех наборах значений переменных.
Пример 5. Формула x∨¬x является тождественно истинной, а формула x∧¬x — тождественно ложной:
x | x∨¬x | x∧¬x |
0 1 | 1 1 | 0 0 |
Множество формул φ1,…,φn АВ называется противоречивым или несовместным, если формула φ1∧…∧φn тождественно ложна.
Пример 6. Множество формул x∨y, ¬x, ¬y противоречиво.
Теорема 1. Пусть φ1,..,φm,ψ – формулы АВ. Следующие условия эквивалентны:
;
{φ1,..,φm,¬ψ} – противоречивое множество формул;
– тождественно истинная формула;
φ1∧..∧φm∧¬ψ – тождественно ложная формула.
- Введение
- Программа курса математическая логика и терия алгоритмов
- Логическое следствие в алгебре высказываний
- 2.1.3. Эквивалентные формулы алгебры высказываний
- 2.1.4. Дизъюнктивные и конъюнктивные нормальные формы в алгебре высказываний
- 2.1.5. Совершенные дизъюнктивные и конъюнктивные нормальные формы
- Исчисление высказываний
- Определение формального исчисления
- Система аксиом и правил вывода
- Теорема о дедукции в исчислении высказываний
- Теорема о замене в исчисления высказываний
- Свойства выводимых и эквивалентных формул исчисления высказываний
- Основные эквивалентности исчисления высказываний
- Полнота и непротиворечивость исчисления высказываний
- Логика предикатов
- Алгебраические системы
- Пример 3. Построить подсистему алгебраической системы , порожденную множествомХ:
- Формулы логики предикатов
- Истинность формулы логики предикатов в алгебраической системе
- 2.3.4. Логическое следствие в логике предикатов
- 2.3.5. Эквивалентные формулы логики предикатов
- 2.3.6. Пренексная нормальная форма в логике предикатов
- X(φ∧ψ)≡xφ∧ψ, X(φ∨ψ)≡xφ∨ψ,
- X(φ∧ψ)≡xφ∧ψ, X(φ∨ψ)≡xφ∨ψ,
- Xφ≡X(φ)xφ≡X(φ)
- 2.4. Исчисление предикатов
- 2.4.1. Система аксиом и правил вывода
- 2.4.2. Эквивалентные формулы исчисления предикатов
- 2.4.3. Теорема Геделя о полноте. Непротиворечивость исчисления предикатов
- Элементы теории алгоритмов
- 2.5.1. Машины Тьюринга
- 2.5.2. Примитивно рекурсивные функции
- 2.5.3. Частично рекурсивные функции
- Задания для домашних и контрольных работ
- 3.1. Совершенные дизъюнктивные нормальные формы, совершенные конъюнктивные нормальные формы
- 3.2. Логическое следствие в алгебре высказываний
- Логическое следствие в логике предикатов
- Частично рекурсивные функции
- Список литературы
- Основная литература
- 4.2. Дополнительная литература
- Содержание