практикум по мат
Теорема о замене в исчисления высказываний
Формулы φ и ψ назовем эквивалентными (обозначим φ≡ψ), если
φ⊢ψ и ψ⊢φ.
Замечание 2. Для любых формул φ и ψ ИВ
φ≡ψ⊢φ→ψ и ⊢ ψ→φ.
Утверждение 1. Отношение ≡ является отношением эквивалентности на множестве формул ИВ, т.е. для любых формул φ, ψ, χ ИВ:
а) φ≡φ;
b) φ≡ψψ≡φ;
с) φ≡ψ, ψ≡xφ≡x.
Утверждение 2. Для любых формул φ, ψ, φ1, ψ1, φ2, ψ2 ИВ таких, что φ1≡ψ1 и φ2≡ψ2, имеют место эквивалентности:
φ1∧φ2≡ψ1∧ψ2, φ1∨φ2≡ψ1∨ψ2, φ1→φ2≡ψ1→ψ2, ¬φ1≡¬ψ1.
Теорема 2 (о замене). Пусть φ ‑ формула ИВ, ψ ‑ ее подформула, φ' получается из φ заменой некоторого вхождения ψ на формулу ψ' ИВ и ψ≡ψ'. Тогда φ≡φ'.
-
Содержание
- Введение
- Программа курса математическая логика и терия алгоритмов
- Логическое следствие в алгебре высказываний
- 2.1.3. Эквивалентные формулы алгебры высказываний
- 2.1.4. Дизъюнктивные и конъюнктивные нормальные формы в алгебре высказываний
- 2.1.5. Совершенные дизъюнктивные и конъюнктивные нормальные формы
- Исчисление высказываний
- Определение формального исчисления
- Система аксиом и правил вывода
- Теорема о дедукции в исчислении высказываний
- Теорема о замене в исчисления высказываний
- Свойства выводимых и эквивалентных формул исчисления высказываний
- Основные эквивалентности исчисления высказываний
- Полнота и непротиворечивость исчисления высказываний
- Логика предикатов
- Алгебраические системы
- Пример 3. Построить подсистему алгебраической системы , порожденную множествомХ:
- Формулы логики предикатов
- Истинность формулы логики предикатов в алгебраической системе
- 2.3.4. Логическое следствие в логике предикатов
- 2.3.5. Эквивалентные формулы логики предикатов
- 2.3.6. Пренексная нормальная форма в логике предикатов
- X(φ∧ψ)≡xφ∧ψ, X(φ∨ψ)≡xφ∨ψ,
- X(φ∧ψ)≡xφ∧ψ, X(φ∨ψ)≡xφ∨ψ,
- Xφ≡X(φ)xφ≡X(φ)
- 2.4. Исчисление предикатов
- 2.4.1. Система аксиом и правил вывода
- 2.4.2. Эквивалентные формулы исчисления предикатов
- 2.4.3. Теорема Геделя о полноте. Непротиворечивость исчисления предикатов
- Элементы теории алгоритмов
- 2.5.1. Машины Тьюринга
- 2.5.2. Примитивно рекурсивные функции
- 2.5.3. Частично рекурсивные функции
- Задания для домашних и контрольных работ
- 3.1. Совершенные дизъюнктивные нормальные формы, совершенные конъюнктивные нормальные формы
- 3.2. Логическое следствие в алгебре высказываний
- Логическое следствие в логике предикатов
- Частично рекурсивные функции
- Список литературы
- Основная литература
- 4.2. Дополнительная литература
- Содержание