2.4.2. Эквивалентные формулы исчисления предикатов
Утверждение 2. В ИПΣ выполнимы все эквивалентности ИВ из теоремы 3.
Утверждение 3. Пусть φ, ψ – формулы ИПΣ переменная x не является свободной переменной формулы ψ, переменная у не является свободной переменной формулы φ. Тогда
1) ¬xφ≡x¬φ, 1΄) ¬xφ≡x¬φ,
2) x(φ∧ψ)≡xφ∧ψ, 2΄) x(φ∨ψ)≡xφ∨ψ,
3) x(φ∨ψ)≡xφ∨ψ, 3΄) x(φ∧ψ)≡xφ∧ψ,
4) xφ≡x(φ)4΄)xφ≡x(φ)
Доказательство. Докажем эквивалентность 1). Построим квазивывод формулы ¬xφ→x¬φ из Ø:
φ→xφ (схема аксиом 12);
¬xφ→¬φ (к п.1 применили свойство контрапозиции);
¬xφ→x¬φ (к п.2 применили правило вывода 2). Построим квазивывод формулы x¬φ→¬xφ из Ø:
x¬φ→¬φ (схема аксиом 11);
¬¬φ→¬x¬φ ( к п.1 применили свойство контрапозиции);
φ→¬¬φ (тавтология);
φ→¬x¬φ (к пп.3 и 2 применили свойство транзитивности);
xφ→¬x¬φ (к п. 4 применили правило вывода 3);
¬¬x¬φ→¬xφ ( к п.5 применили свойство контрапозиции);
x¬φ→¬¬x¬φ (тавтология);
x¬φ→¬xφ (к пп.7 и 6 применили свойство транзитивности).
Докажем эквивалентность 3΄). Построим квазивывод формулы
x(φ∧ψ)→xφ∧ψ из Ø:
x(φ∧ψ)→φ∧ψ (схема аксиом 11);
φ∧ψ→φ (схема аксиом 3);
x(φ∧ψ)→φ (к пп.1 и 2 применили свойство транзитивности);
x(φ∧ψ)→xφ (к п.3 применили правило вывода 2);
φ∧ψ→ψ (схема аксиом 4);
x(φ∧ψ)→ψ (к пп.1 и 5 применили свойство транзитивности);
(x(φ∧ψ)→xφ)→((x(φ∧ψ)→ψ)→(x(φ∧ψ)→xφ∧ψ)) (схема аксиом 5);
(x(φ∧ψ)→ψ)→(x(φ∧ψ)→xφ∧ψ) (к пп. 4 и 7 применили правило вывода 1);
x(φ∧ψ)→xφ∧ψ (к пп. 6 и 8 применили правило вывода 1).
Построим квазивывод формулы xφ∧ψ→x(φ∧ψ) из Ø:
xφ∧ψ→xφ (схема аксиом 3);
xφ→φ (схема аксиом 11);
xφ∧ψ→φ (к пп. 1 и 2 применили свойство транзитивности);
xφ∧ψ→ψ (схема аксиом 4);
(xφ∧ψ→φ)→((xφ∧ψ→ψ)→(xφ∧ψ→φ∧ψ)) (схема аксиом 5);
(xφ∧ψ→ψ)→(xφ∧ψ→φ∧ψ) (к пп. 3 и 5 применили правило вывода 1);
xφ∧ψ→φ∧ψ (к пп. 4 и 5 применили правило вывода 1);
xφ∧ψ→x(φ∧ψ) (к п. 6 применили правило вывода 2).
Теорема 2 (о замене). Пусть φ ‑ формула ИПΣ, ψ ‑ ее подформула, φ' получается из φ заменой некоторого вхождения ψ на формулу ψ' ИПΣ и ψ≡ψ'. Тогда φ≡φ'.
Теорема 3. Для любой формулы φ ИПΣ существует ПНФ ψ, эквивалентная в ИПΣ формуле φ.
- Введение
- Программа курса математическая логика и терия алгоритмов
- Логическое следствие в алгебре высказываний
- 2.1.3. Эквивалентные формулы алгебры высказываний
- 2.1.4. Дизъюнктивные и конъюнктивные нормальные формы в алгебре высказываний
- 2.1.5. Совершенные дизъюнктивные и конъюнктивные нормальные формы
- Исчисление высказываний
- Определение формального исчисления
- Система аксиом и правил вывода
- Теорема о дедукции в исчислении высказываний
- Теорема о замене в исчисления высказываний
- Свойства выводимых и эквивалентных формул исчисления высказываний
- Основные эквивалентности исчисления высказываний
- Полнота и непротиворечивость исчисления высказываний
- Логика предикатов
- Алгебраические системы
- Пример 3. Построить подсистему алгебраической системы , порожденную множествомХ:
- Формулы логики предикатов
- Истинность формулы логики предикатов в алгебраической системе
- 2.3.4. Логическое следствие в логике предикатов
- 2.3.5. Эквивалентные формулы логики предикатов
- 2.3.6. Пренексная нормальная форма в логике предикатов
- X(φ∧ψ)≡xφ∧ψ, X(φ∨ψ)≡xφ∨ψ,
- X(φ∧ψ)≡xφ∧ψ, X(φ∨ψ)≡xφ∨ψ,
- Xφ≡X(φ)xφ≡X(φ)
- 2.4. Исчисление предикатов
- 2.4.1. Система аксиом и правил вывода
- 2.4.2. Эквивалентные формулы исчисления предикатов
- 2.4.3. Теорема Геделя о полноте. Непротиворечивость исчисления предикатов
- Элементы теории алгоритмов
- 2.5.1. Машины Тьюринга
- 2.5.2. Примитивно рекурсивные функции
- 2.5.3. Частично рекурсивные функции
- Задания для домашних и контрольных работ
- 3.1. Совершенные дизъюнктивные нормальные формы, совершенные конъюнктивные нормальные формы
- 3.2. Логическое следствие в алгебре высказываний
- Логическое следствие в логике предикатов
- Частично рекурсивные функции
- Список литературы
- Основная литература
- 4.2. Дополнительная литература
- Содержание