Определение формального исчисления
Введем общее понятие формального исчисления. Будем говорить, что формальное исчисление I определено, если выполняются четыре условия.
Имеется некоторое множество А символов – алфавит исчисления I. Конечные последовательности символов называются словами или выражениями исчисления I. Обозначим через S множество всех слов алфавита исчисления I.
Задано подмножество FS, называемое множеством формул исчисления I. Элементы множества F называются формулами.
Выделено множество АхF формул, называемых аксиомами исчисления I.
Имеется конечное множество K отношений R1,R2,…,Rn между формулами, называемых правилами вывода, причем если (φ1,…,φm,φ)Ri, то φ называется непосредственным следствием формул φ1,…,φm по правилу Ri.
Итак, исчисление I есть четверка (А,F,Ах,K).
Выводом в исчислении I называется последовательность формул φ1,φ2,…,φn такая, что для любого i (1≤i≤n) формула φi есть либо аксиома исчисления I, либо непосредственное следствие каких-либо предыдущих формул.
Формула φ называется теоремой исчисления I, выводимой в I, или доказуемой в I, если существует вывод φ1,…,φn,φ, который называется выводом формулы φ или доказательством теоремы φ.
Вообще говоря, может не существовать алгоритма, с помощью которого для произвольной формулы φ через конечное число шагов можно определить, является ли φ выводимой в исчислении I или нет. Если такой алгоритм существует, то исчисление называется разрешимым. Исчисление называется непротиворечивым, если не все его формулы доказуемы.
-
Содержание
- Введение
- Программа курса математическая логика и терия алгоритмов
- Логическое следствие в алгебре высказываний
- 2.1.3. Эквивалентные формулы алгебры высказываний
- 2.1.4. Дизъюнктивные и конъюнктивные нормальные формы в алгебре высказываний
- 2.1.5. Совершенные дизъюнктивные и конъюнктивные нормальные формы
- Исчисление высказываний
- Определение формального исчисления
- Система аксиом и правил вывода
- Теорема о дедукции в исчислении высказываний
- Теорема о замене в исчисления высказываний
- Свойства выводимых и эквивалентных формул исчисления высказываний
- Основные эквивалентности исчисления высказываний
- Полнота и непротиворечивость исчисления высказываний
- Логика предикатов
- Алгебраические системы
- Пример 3. Построить подсистему алгебраической системы , порожденную множествомХ:
- Формулы логики предикатов
- Истинность формулы логики предикатов в алгебраической системе
- 2.3.4. Логическое следствие в логике предикатов
- 2.3.5. Эквивалентные формулы логики предикатов
- 2.3.6. Пренексная нормальная форма в логике предикатов
- X(φ∧ψ)≡xφ∧ψ, X(φ∨ψ)≡xφ∨ψ,
- X(φ∧ψ)≡xφ∧ψ, X(φ∨ψ)≡xφ∨ψ,
- Xφ≡X(φ)xφ≡X(φ)
- 2.4. Исчисление предикатов
- 2.4.1. Система аксиом и правил вывода
- 2.4.2. Эквивалентные формулы исчисления предикатов
- 2.4.3. Теорема Геделя о полноте. Непротиворечивость исчисления предикатов
- Элементы теории алгоритмов
- 2.5.1. Машины Тьюринга
- 2.5.2. Примитивно рекурсивные функции
- 2.5.3. Частично рекурсивные функции
- Задания для домашних и контрольных работ
- 3.1. Совершенные дизъюнктивные нормальные формы, совершенные конъюнктивные нормальные формы
- 3.2. Логическое следствие в алгебре высказываний
- Логическое следствие в логике предикатов
- Частично рекурсивные функции
- Список литературы
- Основная литература
- 4.2. Дополнительная литература
- Содержание