Определение матрицы достижимости орграфа как матрицы рефлексивного и транзитивного замыкания отношения смежности.
Введенное отношение достижимости на вершинах графа G(V,Х): вершина w достижима из вершины v, если v = w или в G есть путь из v в w. Иначе говоря, достижимость является рефлексивным и транзитивным замыканием отношения смежности.
Найти матрицу смежности, транзитивное и рефлексивное замыкание.
Связность в графах. Слабая, односторонняя и сильная связность в орграфах. Матрица связности и сильной связности. Компоненты связности. Определение матрицы сильной связности на основе матрицы достижимости.
G(V,Х) называется связным, если любая его вершина достижима из любой другой вершины.
Орграф G(V,Х) называется односторонне связным, если для любых двух его вершин, покрайней мене одна достижима из другой.
Орграф G(V,Х) называется сильно связным, если любая его вершина достижима из любой другой.
Орграф G(V,Х) называется слабо связным, если связным является соответствующий ему не орграф, полученный в результате удаления ориентации дуг.
Орграф, не являющийся слабо связным, называется несвязным.
Компонентой сильнодействующей связи орграфа G(V,Х) называется максимальное, по числу вхождения вершин сильносвязный подграф данного орграфа. Аналогично определяется компонента связности не орграфа.
Матрицей сильной связности (связности) орграфа (графа) G(V,Х) называется S n×n, элементы которой находятся из условия: 1, если достижимо из и достижимо из ; 0, если не достижимо из и не достижимо из .
Про содержание матрицы S можно судить о том, является или нет соответствующей ей граф
(орграф) сильносвязным или связным, для этого достаточно определить наличие 0 в матрице, если
0 нет, то граф (орграф) является связным (сильносвязным) в противном случае нет.
Матрица сильной связности может быть построена из матрицы достижимости по формуле
-
Содержание
- Множества. Элементы множеств. Интуитивный принцип объемности. Способы задания множества. Мощность множества.
- Подмножества и их свойства.
- Операции над множествами: объединение, пересечение, разность, дополнение. Диаграммы Эйлера-Венна.
- Свойства операций над множествами (с доказательством).
- Прямое произведение множеств. Бинарные отношения. Способы задания бинарных отношений.
- Операции над бинарными отношениями: композиция отношений, степень отношения, обратное отношение, дополнение отношения, объединение, пересечение, разность отношений.
- Свойства бинарных отношений: рефлексивность, антирефлексивность, симметричность, антисимметричность, транзитивность, связность.
- Замыкания отношений. Транзитивное замыкание, рефлексивное транзитивное замыкание. Теоремы о транзитивном и рефлексивном транзитивном замыкании.
- Операции над бинарными отношениями, заданными в матричной форме.
- Алгоритм определения матрицы транзитивного замыкания бинарного отношения.
- Отношение эквивалентности. Классы эквивалентности и их свойства. Разбиения множеств. Связь эквивалентности с разбиением (теоремы с доказательством).
- Отношение порядка. Строгий и нестрогий порядок. Частичный и полный порядок. Упорядоченные множества.
- Соответствия. Образ и прообраз. Свойства соответствий: всюду определенные, инъективные, сюръективные, функциональные, взаимнооднозначные соответствия.
- Функции и отображения. Виды отображений. Обратные соответствия и функции. Способы задания функций.
- Алгебраические операции. Примеры операций. Арность операции. Способы задания.
- Свойства бинарных алгебраических операций: коммутативность, ассоциативность, дистрибутивность, поглощение, идемпотентность. Нейтральный и симметричный элементы.
- Комбинаторные правила суммы и произведения. Выборки (упорядоченные, неупорядоченные, с повторениями и без).
- Операции над графами.
- Способы представления графов и орграфов на эвм: матрица смежности, матрица инцидентности, список смежности, массив ребер (дуг).
- Маршруты в графах. Виды маршрутов: замкнутые и незамкнутые. Цепь. Простая цепь. Цикл. Простой цикл. Длина маршрута. Расстояние между вершинами. Диаметр графа.
- Орграфы и бинарные отношения. Отношение достижимости вершин орграфа. Матрица достижимости. Связь между отношениями достижимости и смежности.
- Определение матрицы достижимости орграфа как матрицы рефлексивного и транзитивного замыкания отношения смежности.
- Алгоритм выделения компонент связности (сильной связности)
- Нагруженные орграфы Длина пути в нагруженном орграфе. Минимальные пути в нагруженных орграфах.
- Нагруженные орграфы. Алгоритм Форда-Беллмана выделения минимального пути в нагруженном орграфе.