logo search
Sotnik_Lek

Методы и алгоритмы анализа структуры многомерных данных Кластерный анализ

Кластерный анализ предназначен для разбиения множест­ва объектов на заданное или неизвестное число классов на основании некоторого математического критерия качества классификации (cluster (англ.) — гроздь, пучок, скопление, группа элементов, характеризуемых каким-либо общим свой­ством). Критерий качества кластеризации в той или иной мере отражает следующие неформальные требования:

а) внутри групп объекты должны быть тесно связаны между собой;

б) объекты разных групп должны быть далеки друг от друга;

в) при прочих равных условиях распределения объектов по группам должны быть равномерными.

Требования а) и б) выражают стандартную концепцию ком­пактности классов разбиения; требование в) состоит в том, чтобы критерий не навязывал объ­единения отдельных групп объектов.

Узловым моментом в кластерном анализе считается выбор метрики (или меры близости объектов), от которого решающим образом зависит окончательный вариант разбиения объектов на группы при заданном алгоритме разбиения. В каждой конкретной задаче этот выбор произво­дится по-своему, с учетом главных целей исследования, физи­ческой и статистической природы используемой информации и т. п. При применении экстенсиональных методов распозна­вания, как было показано в предыдущих разделах, выбор метрики достигается с помощью специальных алгоритмов преобразования исходного пространства признаков.

Другой важной величиной в кластерном анализе является расстояние между целыми группами объектов. Приведем примеры наиболее распространенных расстояний и мер близости, характеризующих взаимное расположение отдельных групп объектов. Пусть wi — i-я группа (класс, кластер) объектов, Ni — число объектов, образующих группу wi, вектор i — среднее арифме­тическое объектов, входящих в wi (другими словами [i — «центр тяжести» i-й группы), a q ( wl, wm ) — расстояние меж­ду группами wl и wm

Рис. 11. Различные способы определения расстояния между кластерами wl и wm: 1 — по центрам тяжести, 2 — по ближайшим объектам, 3 — по самым далеким объектам

Рис. 3.11.

Расстояние ближайшего соседа есть расстояние между бли­жайшими объектами кластеров:

Расстояние дальнего соседа — расстояние между самыми дальними объектами кластеров:

Расстояние центров тяжести равно расстоянию между центральными точками кластеров:

Обобщенное (по Колмогорову) расстояние между классами, или обобщенное K-расстояние, вычисляется по формуле

В частности, при    и при   - имеем

Выбор той или иной меры расстояния между кластерами влияет, главным образом, на вид выделяемых алгоритмами кла­стерного анализа геометрических группировок объектов в пространстве признаков. Так, алгоритмы, основанные на расстоянии ближайшего соседа, хорошо работают в случае группировок, имеющих сложную, в частности, цепочечную структуру. Расстояние дальнего соседа применяется, когда ис­комые группировки образуют в пространстве признаков шаровидные облака. И промежуточное место занимают ал­горитмы, использующие расстояния центров тяжести и средней связи, которые лучше всего работают в случае группировок эл­липсоидной формы.

Нацеленность алгоритмов кластерного анализа на опре­деленную структуру группировок объектов в пространстве признаков может приводить к неоптимальным или даже неправильным результатам, если гипотеза о типе группировок неверна. В случае отличия реальных распределений от ги­потетических указанные алгоритмы часто «навязывают» дан­ным не присущую им структуру и дезориентируют исследо­вателя. Поэтому экспериментатор, учитывающий данный факт, в условиях априорной неопределенности прибегает к применению батареи алгоритмов кластерного анализа и от­дает предпочтение какому-либо выводу на основании комп­лексной оценки совокупности результатов работы этих ал­горитмов.

Алгоритмы кластерного анализа отличаются большим разнообразием. Это могут быть, например, алгоритмы, реализу­ющие полный перебор сочетаний объектов или осуществляю­щие случайные разбиения множества объектов. В то же время большинство таких алгоритмов состоит из двух этапов. На первом этапе задается начальное (возможно, искусственное или даже произвольное) разбиение множества объектов на классы и определяется некоторый математический критерий качества автоматической классификации. Затем, на втором этапе, объек­ты переносятся из класса в класс до тех пор, пока значение критерия не перестанет улучшаться.

Многообразие алгоритмов кластерного анализа обусловле­но также множеством различных критериев, выражающих те или иные аспекты качества автоматического группирования. Простейший критерий качества непосредственно базируется на величине расстояния между кластерами. Однако такой критерий не учитывает «населенность» кластеров — относи­тельную плотность распределения объектов внутри выделяе­мых группировок. Поэтому другие критерии основываются на вычислении средних расстояний между объектами внутри кла­стеров. Но наиболее часто применяются критерии в виде от­ношений показателей «населенности» кластеров к расстоянию между ними. Это, например, может быть отношение суммы межклассовых расстояний к сумме внутриклассовых (между объектами) расстояний или отношение общей дисперсии дан­ных к сумме внутриклассовых дисперсий и дисперсии центров кластеров.

Функционалы качества и конкретные алгоритмы автомати­ческой классификации достаточно полно и подробно рассмот­рены в специальной литературе. Эти функционалы и ал­горитмы характеризуются различной трудоемкостью и подчас требуют ресурсов высокопроизводительных компьютеров. Раз­нообразные процедуры кластерного анализа входят в состав практически всех современных пакетов прикладных программ для статистической обработки многомерных данных.