Алгоритм поиска глобального экстремума
Алгоритм поиска глобально-оптимального решения можно использовать для решения задач как параметрической, так и структурной оптимизации. Укрупненная блок-схема алгоритма включает четыре процедуры:
1) синтез допустимой структуры (СДС), обеспечивающий выбор допустимого решения из любой подобласти всей области поиска;
2) шаг локального поиска (ШЛП), обеспечивающий переход от одного решения к другому допустимому решению, как правило, той же структуры, но с улучшенным значением критерия; под шагом локального поиска можно понимать некоторый условный шаг по какому-либо алгоритму поиска локального экстремума (например, одна итерация по методу наискорейшего спуска);
3) глобальный поиск, управляющий работой процедур СДС и ШЛП;
4 ) проверка условий прекращения поиска, определяющая конец решения задачи
Приведем основные рекомендации построения процедур СДС и ШЛП.
В некоторых случаях построение процедуры СДС можно свести к предварительному составлению набора допустимых структур, из которого выбирают структуры при каждом обращении к процедуре СДС. Если суть этой процедуры состоит в выборе по возможности допустимого набора переменных структурной оптимизации, то представляется полезным включать в нее правила выбора переменных, основанные на эвристических соображениях, аналитических и экспериментальных исследованиях, изучение опыта проектирования и эксплуатации аналогичных TО. Для некоторых сложных или малоизученных задач проектирования трудно построить процедуру СДС, обеспечивающую получение допустимых структур. В этом случае, в процедуру целесообразно включать операции преобразования недопустимых структур в допустимые. Набор таких операций можно составить из подходящих эвристических приемов (для задач, связанных с техническими объектами сборники таких приемов можно найти в соответствующей литературе, в которой решение изобретательских задач рассматривается более подробно). Преобразование недопустимых структур в допустимые можно также решать как задачу оптимизации. В диалоговом режиме работы санкцию процедуры СДС может взять на себя проектировщик.
В целом по процедуре СДС можно дать следующие рекомендации, направленные на повышение вероятности выбора допустимых структур и снижение объема вычислений по оценке недопустимых:
способы выбора значений переменных должны содержать правила, отсекающие заведомо нерациональные и недопустимые значения переменных и их комбинации;
ограничения следует проверять не после построения структуры в целом, а по возможности в процессе построения, что позволяет сократить лишнюю работу по ненужным построениям и в ряде случаев сразу внести поправки по устранению дефектов структуры;
проверяемые ограничения должны быть упорядочены по снижению вероятности их нарушения; такое упорядочение иногда можно проводить автоматически в процессы решения задачи.
Процедуры ШЛП включают обычно способы изменения переменных, ориентированные на решение задач как структурной, так и параметрической оптимизации. Приведенные рекомендации по построению процедур СДС можно использовать и при построении способов локального изменения дискретных переменных. Для изменения непрерывных переменных, как правило, применяют различные алгоритмы локального поиска. Ниже указаны наиболее предпочтительные (о ГА смотри замечание ниже).
В качестве процедуры глобального поиска используется алгоритм конкурирующих точек. В основе этого алгоритма лежит принцип эволюции популяции живых организмов, находящихся в ограниченном пространстве, например, на острове. В такой популяции резко обостряется конкуренция между отдельными особями. В связи с этим в основу алгоритма конкурирующих точек положены следующие положения:
поиск глобального экстремума осуществляется несколькими конкурирующими решениями (точками);
условия конкуренции одинаковых для всех решений;
в определенные моменты некоторые "худшие" решения бракуются (уничтожаются);
последовательный локальный спуск каждого решения (вначале грубый, затем более точный) происходит независимо от спуска других решений.
Конкуренция позволяет за счет отсева решений, спускающихся в локальные экстремумы, достаточно быстро находить глобальный экстремум в задачах, для которых значение функционала, осредненное по области притяжения глобального экстремума, меньше значения функционала, осредненного по всей области поиска, а область притяжения глобального экстремума не слишком мала.
Алгоритм конкурирующих точек — один из наиболее простых и эффективных по сравнению с другими распространенными алгоритмами поиска глобального экстремума. Так, например, трудоемкость поиска (затраты машинного времени) по этому алгоритму на порядок меньше по сравнению с алгоритмом случайного перебора локальных экстремумов и на два порядка меньше по сравнению с методом Монте-Карло.
Для удобства изложения алгоритма решение будем называть также точкой (в многомерном пространстве поиска) и независимо от того, решается ли задача параметрической оптимизации (1)—(4) или задача структурной оптимизации (6)—(9), будем обозначать его X.
- Указатели
- Содержание
- Глава 5. Экспертные системы 69
- Лекция 1-2: Базовые понятия ии
- Цель преподавания дисциплины
- Терминология
- Философские аспекты проблемы систем ии (возможность существования, безопасность, полезность).
- История развития систем ии.
- Лекция 3: Архитектура и основные составные части систем ии
- Различные подходы к построению систем ии
- Вспомогательные системы нижнего уровня (распознавание образов зрительных и звуковых, идентификация, моделирование, жесткое программирование) и их место в системах ии
- Лекции 4-7: Системы распознавания образов (идентификации)
- Понятие образа
- Проблема обучения распознаванию образов (оро)
- Геометрический и структурный подходы.
- Гипотеза компактности
- Обучение и самообучение. Адаптация и обучение
- Перцептроны
- Нейронные сети История исследований в области нейронных сетей
- Модель нейронной сети с обратным распространением ошибки (back propagation)
- Нейронные сети: обучение без учителя
- Нейронные сети Хопфилда и Хэмминга
- Метод потенциальных функций
- Метод группового учета аргументов мгуа Метод наименьших квадратов
- Общая схема построения алгоритмов метода группового учета аргументов (мгуа).
- Алгоритм с ковариациями и с квадратичными описаниями.
- Метод предельных упрощений (мпу)
- Коллективы решающих правил
- Методы и алгоритмы анализа структуры многомерных данных Кластерный анализ
- Иерархическое группирование
- Неформальные процедуры
- Алгоритмические модели
- Продукционные модели
- Режим возвратов
- Логический вывод
- Зависимость продукций
- Продукционные системы с исключениями
- Язык Рефал
- Глава 5. Экспертные системы
- Экспертные системы, базовые понятия
- Экспертные системы, методика построения
- Э тап идентификации
- Этап концептуализации
- Этап формализации
- Этап выполнения
- Этап тестирования
- Этап опытной эксплуатации
- Экспертные системы, параллельные и последовательные решения
- Пример эс, основанной на правилах логического вывода и действующую в обратном порядке
- Часть 1.
- Часть 2.
- Часть 3.
- Часть 4.
- Часть 5.
- Лекции 14-16. Машинная эволюция
- Метод перебора, как наиболее универсальный метод поиска решений. Методы ускорения перебора.
- Эволюция
- Генетический алгоритм (га)
- Как создать хромосомы?
- Как работает генетический алгоритм?
- Эволюционное (генетическое) программирование
- Автоматический синтез технических решений
- Поиск оптимальных структур
- Алгоритм поиска глобального экстремума
- Алгоритм конкурирующих точек
- Алгоритм случайного поиска в подпространствах
- Некоторые замечания относительно использования га
- Автоматизированный синтез физических принципов действия Фонд физико-технических эффектов
- Синтез физических принципов действия по заданной физической операции
- Заключительные замечания
- Слабосвязанный мир
- Разделяй и властвуй