Неформальные процедуры
Говоря о неформальных процедурах мы обычно хорошо понимаем, что имеется в виду, и без затруднений можем привести примеры таких процедур, связанных с пониманием текстов естественного языка, переводом с одного естественного языка на другой, информационным поиском по смыслу и т. д.
Трудности возникают при попытке точного определения подобных процедур. Так, если рассматривать неформальные процедуры всего лишь как абстрактные функции, которые для каждого значения аргумента "выдают" некоторое значение, то категория неформальности вообще исчезает из рассмотрения.
Неформальная процедура — это особый способ представления функций. Чтобы в какой-то степени приблизиться к этому "человеческому" способу представления функций, рассмотрим прежде всего традиционные алгоритмические модели и попытаемся понять, в чем состоит основная трудность их применения для имитации неформальных процедур.
- Указатели
- Содержание
- Глава 5. Экспертные системы 69
- Лекция 1-2: Базовые понятия ии
- Цель преподавания дисциплины
- Терминология
- Философские аспекты проблемы систем ии (возможность существования, безопасность, полезность).
- История развития систем ии.
- Лекция 3: Архитектура и основные составные части систем ии
- Различные подходы к построению систем ии
- Вспомогательные системы нижнего уровня (распознавание образов зрительных и звуковых, идентификация, моделирование, жесткое программирование) и их место в системах ии
- Лекции 4-7: Системы распознавания образов (идентификации)
- Понятие образа
- Проблема обучения распознаванию образов (оро)
- Геометрический и структурный подходы.
- Гипотеза компактности
- Обучение и самообучение. Адаптация и обучение
- Перцептроны
- Нейронные сети История исследований в области нейронных сетей
- Модель нейронной сети с обратным распространением ошибки (back propagation)
- Нейронные сети: обучение без учителя
- Нейронные сети Хопфилда и Хэмминга
- Метод потенциальных функций
- Метод группового учета аргументов мгуа Метод наименьших квадратов
- Общая схема построения алгоритмов метода группового учета аргументов (мгуа).
- Алгоритм с ковариациями и с квадратичными описаниями.
- Метод предельных упрощений (мпу)
- Коллективы решающих правил
- Методы и алгоритмы анализа структуры многомерных данных Кластерный анализ
- Иерархическое группирование
- Неформальные процедуры
- Алгоритмические модели
- Продукционные модели
- Режим возвратов
- Логический вывод
- Зависимость продукций
- Продукционные системы с исключениями
- Язык Рефал
- Глава 5. Экспертные системы
- Экспертные системы, базовые понятия
- Экспертные системы, методика построения
- Э тап идентификации
- Этап концептуализации
- Этап формализации
- Этап выполнения
- Этап тестирования
- Этап опытной эксплуатации
- Экспертные системы, параллельные и последовательные решения
- Пример эс, основанной на правилах логического вывода и действующую в обратном порядке
- Часть 1.
- Часть 2.
- Часть 3.
- Часть 4.
- Часть 5.
- Лекции 14-16. Машинная эволюция
- Метод перебора, как наиболее универсальный метод поиска решений. Методы ускорения перебора.
- Эволюция
- Генетический алгоритм (га)
- Как создать хромосомы?
- Как работает генетический алгоритм?
- Эволюционное (генетическое) программирование
- Автоматический синтез технических решений
- Поиск оптимальных структур
- Алгоритм поиска глобального экстремума
- Алгоритм конкурирующих точек
- Алгоритм случайного поиска в подпространствах
- Некоторые замечания относительно использования га
- Автоматизированный синтез физических принципов действия Фонд физико-технических эффектов
- Синтез физических принципов действия по заданной физической операции
- Заключительные замечания
- Слабосвязанный мир
- Разделяй и властвуй