Эволюция
Прежде всего, упомяну, что отнюдь не все ученые признают наличие эволюции. Многие религиозные течения (например, свидетели Иеговы) считают учение об эволюции живой природы ошибочным. Я не хочу сейчас вдаваться в полемику относительно доказательств за и против по одной простой причине. Даже, если я не прав в своих взглядах, объясняя эволюционные алгоритмы как аналоги процессов, происходящих в живой природе, никто не сможет сказать, что эти алгоритмы неверны. Несмотря ни на что, они находят огромное применение в современной науке и технике, и показывают подчас просто поразительные результаты.
Основные принципы эволюционной теории заложил Чарльз Дарвин в своей самой революционной работе — "Происхождение видов". Самым важным его выводом был вывод об основной направляющей силе эволюции — ею признавался естественный отбор. Другими словами — выживает сильнейший (в широком смысле этого слова). Забегая вперед, замечу, что любой эволюционный алгоритм имеет такой шаг, как выделение самых сильных (полезных) особей. Вторым, не менее важным выводом Дарвина был вывод об изменчивости организмов. Аналогом данного закона у всех алгоритмов является шаг генерации новых экземпляров искомых объектов (решений, структур, особей, алгоритмов).
Именно отбор наилучших объектов является ключевой эвристикой всех эволюционных методов, позволяющих зачастую уменьшить время поиска решения на несколько порядков по сравнению со случайным поиском. Если попытаться выразить эту эвристику на естественном языке, то получим: сложно получить самое лучшее решение, модифицируя плохое. Скорее всего, оно получится из нескольких лучших на данный момент.
Из основных особенностей эволюционных алгоритмов можно отметить их некоторую сложность в плане настройки основных параметров (вырождение, либо неустойчивость решения). Поэтому, экспериментируя с ними, и получив не очень хорошие результаты, попробуйте не объявлять сразу алгоритм неподходящим, а попытаться опробовать его при других настройках. Данный недостаток следует из основной эвристики — можно "уничтожить" предка самого лучшего решения, если сделать селекцию слишком "жесткой" (не зря ведь биологам давно известно, что если осталось меньше десятка особей исчезающего вида, то этот вид сам по себе исчезнет из-за вырождения).
МГУА
Описанный в разделе алгоритмов распознавания образов метод группового учета аргументов так же относится к разряду эволюционных. Его можно представить как следующий цикл:
Берем самый последний слой классификаторов.
Генерируем из них по определенным правилам новый слой классификаторов (которые теперь сами становятся последним слоем).
Отбираем из них F лучших, где F-ширина отбора (селекции).
Если не выполняется условие прекращения селекции (наступление вырождения – инцухта), переходим на п. 1.
Самый лучший классификатор объявляется искомым решением задачи идентификации.
Как мы видим, налицо все признаки эволюционного алгоритма — отбор (селекция) и генерация нового поколения.
- Указатели
- Содержание
- Глава 5. Экспертные системы 69
- Лекция 1-2: Базовые понятия ии
- Цель преподавания дисциплины
- Терминология
- Философские аспекты проблемы систем ии (возможность существования, безопасность, полезность).
- История развития систем ии.
- Лекция 3: Архитектура и основные составные части систем ии
- Различные подходы к построению систем ии
- Вспомогательные системы нижнего уровня (распознавание образов зрительных и звуковых, идентификация, моделирование, жесткое программирование) и их место в системах ии
- Лекции 4-7: Системы распознавания образов (идентификации)
- Понятие образа
- Проблема обучения распознаванию образов (оро)
- Геометрический и структурный подходы.
- Гипотеза компактности
- Обучение и самообучение. Адаптация и обучение
- Перцептроны
- Нейронные сети История исследований в области нейронных сетей
- Модель нейронной сети с обратным распространением ошибки (back propagation)
- Нейронные сети: обучение без учителя
- Нейронные сети Хопфилда и Хэмминга
- Метод потенциальных функций
- Метод группового учета аргументов мгуа Метод наименьших квадратов
- Общая схема построения алгоритмов метода группового учета аргументов (мгуа).
- Алгоритм с ковариациями и с квадратичными описаниями.
- Метод предельных упрощений (мпу)
- Коллективы решающих правил
- Методы и алгоритмы анализа структуры многомерных данных Кластерный анализ
- Иерархическое группирование
- Неформальные процедуры
- Алгоритмические модели
- Продукционные модели
- Режим возвратов
- Логический вывод
- Зависимость продукций
- Продукционные системы с исключениями
- Язык Рефал
- Глава 5. Экспертные системы
- Экспертные системы, базовые понятия
- Экспертные системы, методика построения
- Э тап идентификации
- Этап концептуализации
- Этап формализации
- Этап выполнения
- Этап тестирования
- Этап опытной эксплуатации
- Экспертные системы, параллельные и последовательные решения
- Пример эс, основанной на правилах логического вывода и действующую в обратном порядке
- Часть 1.
- Часть 2.
- Часть 3.
- Часть 4.
- Часть 5.
- Лекции 14-16. Машинная эволюция
- Метод перебора, как наиболее универсальный метод поиска решений. Методы ускорения перебора.
- Эволюция
- Генетический алгоритм (га)
- Как создать хромосомы?
- Как работает генетический алгоритм?
- Эволюционное (генетическое) программирование
- Автоматический синтез технических решений
- Поиск оптимальных структур
- Алгоритм поиска глобального экстремума
- Алгоритм конкурирующих точек
- Алгоритм случайного поиска в подпространствах
- Некоторые замечания относительно использования га
- Автоматизированный синтез физических принципов действия Фонд физико-технических эффектов
- Синтез физических принципов действия по заданной физической операции
- Заключительные замечания
- Слабосвязанный мир
- Разделяй и властвуй