Этап выполнения
Цель этого этапа — создание одного или нескольких прототипов ЭС, решающих требуемые задачи. Затем на данном этапе по результатам тестирования и опытной эксплуатации создается конечный продукт, пригодный для промышленного использования. Разработка прототипа состоит в программировании его компонентов или выборе их из известных инструментальных средств и наполнении базы знаний.
Главное в создании прототипа заключается в том, чтобы этот прототип обеспечил проверку адекватности идей, методов и способов представления знаний решаемым задачам. Создание первого прототипа должно подтвердить, что выбранные методы решений и способы представления пригодны для успешного решения, по крайней мере, ряда задач из актуальной предметной области, а также продемонстрировать тенденцию к получению высококачественных и эффективных решений для всех задач предметной области по мере увеличения объема знаний.
После разработки первого прототипа ЭС-1 круг предлагаемых для решения задач расширяется, и собираются пожелания и замечания, которые должны быть учтены в очередной версии системы ЭС-2. Осуществляется развитие ЭС-1 путем добавления "дружественного" интерфейса, средств для исследования базы знаний и цепочек выводов, генерируемых системой, а также средств для сбора замечаний пользователей и средств хранения библиотеки задач, решенных системой.
Выполнение экспериментов с расширенной версией ЭС-1, анализ пожеланий и замечаний служат отправной точкой для создания второго прототипа ЭС-2. Процесс разработки ЭС-2 итеративный. Он может продолжаться от нескольких месяцев до нескольких лет в зависимости от сложности предметной области, гибкости выбранного представления знаний и степени соответствия управляющего механизма решаемым задачам (возможно, потребуется разработка ЭС-3 и т.д.). При разработке ЭС-2, кроме перечисленных задач, решаются следующие:
анализ функционирования системы при значительном расширении базы знаний;
исследование возможностей системы в решении более широкого круга задач и принятие мер для обеспечения таких возможностей;
анализ мнений пользователей о функционировании ЭС;
разработка системы ввода-вывода, осуществляющей анализ или синтез предложений ограниченного естественного языка, позволяющей взаимодействовать с ЭС-2 в форме, близкой к форме стандартных учебников для данной области.
Если ЭС-2 успешно прошла этап тестирования, то она может классифицироваться как промышленная экспертная система.
- Указатели
- Содержание
- Глава 5. Экспертные системы 69
- Лекция 1-2: Базовые понятия ии
- Цель преподавания дисциплины
- Терминология
- Философские аспекты проблемы систем ии (возможность существования, безопасность, полезность).
- История развития систем ии.
- Лекция 3: Архитектура и основные составные части систем ии
- Различные подходы к построению систем ии
- Вспомогательные системы нижнего уровня (распознавание образов зрительных и звуковых, идентификация, моделирование, жесткое программирование) и их место в системах ии
- Лекции 4-7: Системы распознавания образов (идентификации)
- Понятие образа
- Проблема обучения распознаванию образов (оро)
- Геометрический и структурный подходы.
- Гипотеза компактности
- Обучение и самообучение. Адаптация и обучение
- Перцептроны
- Нейронные сети История исследований в области нейронных сетей
- Модель нейронной сети с обратным распространением ошибки (back propagation)
- Нейронные сети: обучение без учителя
- Нейронные сети Хопфилда и Хэмминга
- Метод потенциальных функций
- Метод группового учета аргументов мгуа Метод наименьших квадратов
- Общая схема построения алгоритмов метода группового учета аргументов (мгуа).
- Алгоритм с ковариациями и с квадратичными описаниями.
- Метод предельных упрощений (мпу)
- Коллективы решающих правил
- Методы и алгоритмы анализа структуры многомерных данных Кластерный анализ
- Иерархическое группирование
- Неформальные процедуры
- Алгоритмические модели
- Продукционные модели
- Режим возвратов
- Логический вывод
- Зависимость продукций
- Продукционные системы с исключениями
- Язык Рефал
- Глава 5. Экспертные системы
- Экспертные системы, базовые понятия
- Экспертные системы, методика построения
- Э тап идентификации
- Этап концептуализации
- Этап формализации
- Этап выполнения
- Этап тестирования
- Этап опытной эксплуатации
- Экспертные системы, параллельные и последовательные решения
- Пример эс, основанной на правилах логического вывода и действующую в обратном порядке
- Часть 1.
- Часть 2.
- Часть 3.
- Часть 4.
- Часть 5.
- Лекции 14-16. Машинная эволюция
- Метод перебора, как наиболее универсальный метод поиска решений. Методы ускорения перебора.
- Эволюция
- Генетический алгоритм (га)
- Как создать хромосомы?
- Как работает генетический алгоритм?
- Эволюционное (генетическое) программирование
- Автоматический синтез технических решений
- Поиск оптимальных структур
- Алгоритм поиска глобального экстремума
- Алгоритм конкурирующих точек
- Алгоритм случайного поиска в подпространствах
- Некоторые замечания относительно использования га
- Автоматизированный синтез физических принципов действия Фонд физико-технических эффектов
- Синтез физических принципов действия по заданной физической операции
- Заключительные замечания
- Слабосвязанный мир
- Разделяй и властвуй