Постройка дома
ЗАДАЧА
На месте разрушенного дома, от которого уцелела одна стена, желают построить новый. Длина уцелевшей стены – 12 м. Площадь нового дома должна равняться 112 кв. м. Хозяйственные условия работы таковы:
1) ремонт погонного метра стены обходится в 25% стоимости кладки новой;
2) разбор погонного метра старой стены и кладка из полученного материала новой стены стоит 50% того, во что обходится постройка погонного метра стены из нового материала.
Как при таких условиях наивыгоднейшим образом использовать уцелевшую стену?
Рис. 25.
РЕШЕНИЕ
Пусть от прежней стены сохраняется х метров, а остальные 12 – х метров разбираются, чтобы из полученного материала возвести заново часть стены нового дома (рис. 25). Если стоимость кладки погонного метра стены из нового материала равна а, то ремонт х метров старой стены будет стоить ; возведение участка длиной 12 – х будет стоить ; прочей части этой стены а [у – (12 – х)], т. е. а (у + х – 12); третьей стены ах, четвертой ау. Вся работа обойдется в
Последнее выражение достигает наименьшей величины тогда же, когда и сумма
7x + 8y.
Мы знаем, что площадь дома ху равна 112; следовательно,
7x · 8y = 56 · 112.
При постоянном произведении сумма 7x + 8y достигает наименьшей величины тогда, когда
7x = 8y,
откуда
.
Подставив это выражение для у в уравнение
xy = 112,
имеем:
.
А так как длина старой стены 12 м, то подлежит разборке только 0,7 м этой стены.
<Paaaa
- Астрономические числа
- Сколько весит весь воздух
- Горение без пламени и жара
- Разнообразие погоды
- Замок с секретом
- Суеверный велосипедист
- Итоги повторного удвоения
- В миллионы раз быстрее
- 10000 Действий в секунду
- Число возможных шахматных партий
- Секрет шахматного автомата
- Тремя двойками
- Жизнь Диофанта
- Лошадь и мул
- Четверо братьев
- Птицы у реки
- Прогулка
- Артель косцов
- Коровы на лугу
- Задача Ньютона
- Перестановка часовых стрелок
- Совпадение часовых стрелок
- Искусство отгадывать числа
- Мнимая нелепость
- Уравнение думает за нас
- Курьезы и неожиданности
- В парикмахерской
- Трамвай и пешеход
- Пароход и плоты
- Две жестянки кофе
- Вечеринка
- Морская разведка
- На велодромe
- Состязание мотоциклов
- Средняя скорость езды
- Быстродействующие вычислительные машины
- 1) 34 36 20 2) 33 37 21 3) 32 36 22 4) 33 35 23 5) 32 37 24 6) 34 35 25 18-Й приказ: передача управления в первую ячейку.
- Цифры 1, 5 и 6
- Доплата
- Делимость на 11
- Номер автомашины
- Делимость на 19
- Число простых чисел
- Когда без алгебры проще
- Ревизия магазина
- Покупка почтовых марок
- Покупка фруктов
- Отгадать день рождения
- Продажа кур
- Два числа и четыре действия
- Какой прямоугольник?
- Два двузначных числа
- Пифагоровы числа
- 1) Один из "катетов" должен быть кратным трем. 2) Один из "катетов" должен быть кратным четырем. 3) Одно из пифагоровых чисел должно быть кратно пяти.
- Неопределенное уравнение третьей степени
- Сто тысяч за доказательство теоремы
- Пчелиный рой
- Задача Эйлера
- Громкоговорители
- Алгебра лунного перелета
- "Трудная задача"
- Какие числа?
- Где устроить полустанок?
- Как провести шоссе?
- Когда произведение наибольшее?
- Когда сумма наименьшая?
- Постройка дома
- Дачный участок
- Желоб наибольшего сечения
- Воронка наибольшей вместимости
- Самое яркое освещение
- Алгебра на клетчатой бумаге
- Поливка огорода
- Кормление кур
- Бригада землекопов
- Покупка лошади
- Вознаграждение воина
- Соперники логарифмов
- Эволюция логарифмических таблиц
- Логарифмические диковинки
- Логарифмы на эстраде
- Логарифмы на животноводческой ферме
- Логарифмы в музыке
- Звезды, шум и логарифмы
- Логарифмы в электроосвещении
- Завещания на сотни лет
- Непрерывный рост капитала
- Число "е"
- Логарифмическая комедия
- Любое число – тремя двойками