7. Метод Гаусса решения систем линейных неоднородных алгебраических уравнений. Теорема Кронекера-Капелли.
Метод Гаусса прекрасно подходит для решения систем линейных алгебраических уравнений (СЛАУ). Он обладает рядом преимуществ по сравнению с другими методами:
во-первых, нет необходимости предварительно исследовать систему уравнений на совместность;
во-вторых, методом Гаусса можно решать не только СЛАУ, в которых число уравнений совпадает с количеством неизвестных переменных и основная матрица системы невырожденная, но и системы уравнений, в которых число уравнений не совпадает с количеством неизвестных переменных или определитель основной матрицы равен нулю;
в-третьих, метод Гаусса приводит к результату при сравнительно небольшом количестве вычислительных операций.
Рассмотрим систему линейных уравнений Метод Гаусса решения систем линейных уравнений состоит из двух этапов, называемых прямым и обратным ходом. Прямой ход метода Гаусса заключается в том, что с помощью элементарных преобразований над расширенной матрицей система приводится к «ступенчатому» виду.
Обратный ход метода Гаусса состоит в том, что, начиная с последнего уравнения ступенчатой системы, вычисляются неизвестные.
При реализации прямого хода метода Гаусса возможны следующие три случая.
1. В результате преобразований в системе уравнений будет получено уравнение вида где Ясно, что никакой набор действительных чисел этому уравнению удовлетворять не может, поэтому в таком случае система уравнений несовместна.
2. В результате преобразований получится ступенчатая система уравнений
в которой количество уравнений совпадает с количеством неизвестных.
В этом случае система уравнений является определённой.
В результате преобразований получится система уравнений ступенчатого вида, в которой количество неизвестных больше числа уравнений системы ()
В этом случае те неизвестные, которые стоят на «ступеньках», называются главными неизвестными (), а другие неизвестные называются свободными (); система уравнений будет неопределённой. Тогда обратный ход метода Гаусса состоит в том, что начиная с последнего уравнения системы, главные неизвестные выражаются через свободные и составляется общее решение системы уравнений. Для того чтобы получить какое-либо частное решение системы, свободным неизвестным придают конкретные числовые значения, вычисляя тем самым главные неизвестные.
Теоре́ма Кро́некера — Капе́лли — критерий совместности системы линейных алгебраических уравнений:
Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг её основной матрицы равен рангу её расширенной матрицы, причём система имеет единственное решение, если ранг равен числу неизвестных, и бесконечное множество решений, если ранг меньше числа неизвестных. |
Для того, чтобы линейная система являлась совместной, необходимо и достаточно, чтобы ранг расширенной матрицы этой системы был равен рангу ее основной матрицы.
- 2. Миноры и алгебраические дополнения. Разложение определителя по элементам произвольного ряда.
- 3. Матрицы и их свойства. Ранг матрицы.
- 4. Операции над матрицами, обратная матрица.
- 5. Решение и исследование систем линейных неоднородных алгебраических уравнений с помощью формул Крамера.
- 6. Решение системы линейчатых неоднородных алгебраических уравнений средствами матричного исчисления.
- 7. Метод Гаусса решения систем линейных неоднородных алгебраических уравнений. Теорема Кронекера-Капелли.
- Доказательство (условия совместности системы)
- 9. Проекция вектора на ось. Направляющие косинусы вектора.
- 10. Линейные операции над векторами и их основные свойства. Линейные операции над векторами Сложение векторов
- Вычитание векторов
- Умножение вектора на число
- Свойства линейных операций над векторами
- Линейные комбинации векторов
- 11. Теоремы о проекциях векторов. Условие коллинеарности векторов.
- Условия коллинеарности векторов
- 12. Линейная зависимость векторов. Понятие базиса.
- Свойства линейно зависимых и линейно независимых векторов
- Пример.
- 13. Скалярное произведение векторов. Признак ортогональности векторов.
- 14. Расстояние между двумя точками пространства r3 . Деление отрезка в данном отношении. Расстояние между точками в пространстве, формула.
- Вывод формул для нахождения координат точки, делящей отрезок в данном отношении, на плоскости.
- 15. Векторное произведение векторов.
- 16. Смешанное произведение векторов. Условие компланарности векторов.
- 17. Метод координат и основные задачи аналитической геометрии.
- 18. Прямые в r2. Различные виды уравнений прямой в r2
- 19. Нормированное уравнение прямой.
- 20. Условия параллельности и перпендикулярности прямых. Вычисление угла между прямыми в r2.
- 21. Расстояние от точки до прямой в r2.
- 22. Линии второго порядка. Каноническое уравнение окружности.
- 23. Каноническое уравнение эллипса.
- 24. Каноническое уравнение гиперболы.
- 25. Каноническое уравнение параболы.
- 26. Преобразование уравнений линий второго порядка к каноническому виду. Параллельный перенос системы координат.
- 28. Параметрическая форма задания уравнения линий в трехмерном пространстве.
- 29. Плоскость в трехмерном пространстве. Различные виды уравнений плоскости.
- 30. Нормированное уравнение плоскости
- 31. Расстояние от точки до плоскости.
- 32. Расстояние между двумя параллельными прямыми.
- 33. Прямая в пространстве. Различные формы уравнения прямой.
- 34. Угол между двумя пересекающимися прямыми в пространстве. Расстояние от точки до прямой в пространстве.
- Первый способ нахождения расстояния от точки до прямой a в пространстве.
- Второй способ, позволяющий находить расстояние от точки до прямой a в пространстве.
- 35. Расстояние между перекрещивающимися прямыми в пространстве.
- Нахождение общего перпендикуляра скрещивающихся прямых.
- 36. Поверхности второго порядка. Эллипсоиды и гиперболоиды.
- 37. Параболоиды. Уравнения цилиндрических и конических поверхностей.
- 38. Сферическая система координат.