33. Прямая в пространстве. Различные формы уравнения прямой.
Прямая в пространстве может быть задана как линия пересечения двух плоскостей. Так как точка прямой принадлежит каждой из плоскостей, то ее координаты обязаны удовлетворять уравнениям обеих плоскостей, то есть удовлетворять системе из двух уравнений.
Итак, если уравнения двух непараллельных плоскостей -- и , то прямая, являющаяся их линией пересечения, задается системой уравнений
(11.11) |
И наоборот, точки, удовлетворяющие такой системе уравнений, образуют прямую, являющуюся линией пересечения плоскостей, чьи уравнения образуют эту систему.
Уравнения (11.11) называют общими уравнениями прямой в пространстве.
Замечание 11.2 Любые попытки с помощью преобразований уравнений системы (11.11) получить одно (линейное) уравнение, задающее прямую, обречены на неудачу. Одно уравнение -- это уравнение плоскости.
Общие уравнения прямой "неудобны" для получения информации о положении прямой.
Например, чтобы найти координаты какой-нибудь точки на прямой, нужно провести довольно сложные вычисления. А именно, задать произвольно какую-нибудь координату, подставить ее в систему (11.11) и из получившейся системы двух уравнений с двумя неизвестными найти две остальные координаты. Причем может оказаться, что полученная система не имеет решений. Тогда нужно произвольно задать другую координату и из системы найти две оставшиеся координаты
Можно задать прямую в пространстве и другим способом.
Ненулевой вектор, лежащий на прямой (параллельный ей) называется направляющим вектором прямой.
Пусть для прямой известны ее направляющий вектор и точка , лежащая на этой прямой. Пусть -- произвольная (текущая) точка прямой . Обозначим через и r радиус-векторы точек и соответственно (рис. 11.11).
Рис.11.11.Векторное уравнение прямой
Тогда вектор коллинеарен вектору p и, следовательно, , где -- некоторое число. Из рис. 11.11 видно, что
(11.12) |
Это уравнение называется векторным уравнением прямой или уравнением в векторной форме. При каждом значении параметра мы будем получать новую точку на прямой .
Замечание 11.3 Если в качестве параметра взять время, то точка будет двигаться по прямой со скоростью , причем в момент времент ее положение совпадает с точкой . Вектор скорости точки совпадает с вектором p.
От векторного соотношения (11.12) перейдем к соотношениям координат. Так как -- координаты точки , то , , . Из формулы (11.12) получим
(11.13) |
Полученная система уравнений называется параметрическими уравнениями прямой.
Обратим внимание на то, что по параметрическим уравнениям легко установить направляющий вектор прямой и координаты одной из ее точек. Коэффициенты перед параметром дают координаты направляющего вектора, а свободные члены в правой части -- координаты точки на прямой.
Так как направляющий вектор прямой определяется с точностью до умножения на число, отличное от нуля, а в качестве точки можно взять любую точку прямой, то одна и та же прямая может задаваться бесконечным множеством систем параметрических уравнений. Причем разные системы могут быть не похожими друг на друга.
Из уравнений (11.13) выразим параметр :
Так как во всех трех соотношениях параметр имеет одно и то же значение, то
(11.14) |
Эти уравнения называются каноническими1 уравнениями прямой.
Замечание 11.4 В канонических уравнениях прямой допускается в знаменателе писать 0. Это не означает, что можно выполнить деление на 0. Просто из канонических уравнений мы получаем информацию о том, что направляющий вектор прямой имеет координаты , из которых одна нулевая.
Замечание 11.5 Канонические уравнения прямой (11.14) нельзя рассматривать как одно уравнение (в них два знака "=" и следовательно, два уравнения). Они составляют своеобразным способом записанную систему из двух уравнений
- 2. Миноры и алгебраические дополнения. Разложение определителя по элементам произвольного ряда.
- 3. Матрицы и их свойства. Ранг матрицы.
- 4. Операции над матрицами, обратная матрица.
- 5. Решение и исследование систем линейных неоднородных алгебраических уравнений с помощью формул Крамера.
- 6. Решение системы линейчатых неоднородных алгебраических уравнений средствами матричного исчисления.
- 7. Метод Гаусса решения систем линейных неоднородных алгебраических уравнений. Теорема Кронекера-Капелли.
- Доказательство (условия совместности системы)
- 9. Проекция вектора на ось. Направляющие косинусы вектора.
- 10. Линейные операции над векторами и их основные свойства. Линейные операции над векторами Сложение векторов
- Вычитание векторов
- Умножение вектора на число
- Свойства линейных операций над векторами
- Линейные комбинации векторов
- 11. Теоремы о проекциях векторов. Условие коллинеарности векторов.
- Условия коллинеарности векторов
- 12. Линейная зависимость векторов. Понятие базиса.
- Свойства линейно зависимых и линейно независимых векторов
- Пример.
- 13. Скалярное произведение векторов. Признак ортогональности векторов.
- 14. Расстояние между двумя точками пространства r3 . Деление отрезка в данном отношении. Расстояние между точками в пространстве, формула.
- Вывод формул для нахождения координат точки, делящей отрезок в данном отношении, на плоскости.
- 15. Векторное произведение векторов.
- 16. Смешанное произведение векторов. Условие компланарности векторов.
- 17. Метод координат и основные задачи аналитической геометрии.
- 18. Прямые в r2. Различные виды уравнений прямой в r2
- 19. Нормированное уравнение прямой.
- 20. Условия параллельности и перпендикулярности прямых. Вычисление угла между прямыми в r2.
- 21. Расстояние от точки до прямой в r2.
- 22. Линии второго порядка. Каноническое уравнение окружности.
- 23. Каноническое уравнение эллипса.
- 24. Каноническое уравнение гиперболы.
- 25. Каноническое уравнение параболы.
- 26. Преобразование уравнений линий второго порядка к каноническому виду. Параллельный перенос системы координат.
- 28. Параметрическая форма задания уравнения линий в трехмерном пространстве.
- 29. Плоскость в трехмерном пространстве. Различные виды уравнений плоскости.
- 30. Нормированное уравнение плоскости
- 31. Расстояние от точки до плоскости.
- 32. Расстояние между двумя параллельными прямыми.
- 33. Прямая в пространстве. Различные формы уравнения прямой.
- 34. Угол между двумя пересекающимися прямыми в пространстве. Расстояние от точки до прямой в пространстве.
- Первый способ нахождения расстояния от точки до прямой a в пространстве.
- Второй способ, позволяющий находить расстояние от точки до прямой a в пространстве.
- 35. Расстояние между перекрещивающимися прямыми в пространстве.
- Нахождение общего перпендикуляра скрещивающихся прямых.
- 36. Поверхности второго порядка. Эллипсоиды и гиперболоиды.
- 37. Параболоиды. Уравнения цилиндрических и конических поверхностей.
- 38. Сферическая система координат.