logo search
Ответы по алгему

Второй способ, позволяющий находить расстояние от точки до прямой a в пространстве.

Так как в условии задачи нам задана прямая a, то мы можем определить ее направляющий вектор и координаты некоторой точки М3, лежащей на прямой a. Тогда по координатам точек и мы можем вычислить координаты вектора : (при необходимости обращайтесь к статьекоординаты вектора через координаты точек его начала и конца).

Отложим векторы и от точки М3 и построим на них параллелограмм. В этом параллелограмме проведем высоту М1H1.

Очевидно, высота М1H1 построенного параллелограмма равна искомому расстоянию от точкиМ1 до прямой a. Найдем .

С одной стороны площадь параллелограмма (обозначим ее S) может быть найдена через векторное произведение векторов и по формуле . С другой стороны площадь параллелограмма равна произведению длины его стороны на высоту, то есть, , где - длина вектора , равная длине стороны рассматриваемого параллелограмма. Следовательно, расстояние от заданной точки М1 до заданной прямой a может быть найдена из равенства как .

Итак, чтобы найти расстояние от точки до прямой a в пространстве нужно